Learning Three-Dimensional Flow for Interactive Aerodynamic Design

NOBUY UKI UMETANI, Autodesk Research
BERND BICKEL, IST Austria

training data

real-time prediction

prediction for new shape during interactive design

Fig. 1. Our interactive design system allows users to interactively design and optimize a free-form 3D shape while the pressure on the surface (color-coded)
and the velocity field (illustrated as stream lines) are accurately predicted in real-time. Our data-driven model is based on a novel representation for 3D shapes

and can be robustly trained from a set of exemplars.

We present a data-driven technique to instantly predict how fluid flows
around various three-dimensional objects. Such simulation is useful for com-
putational fabrication and engineering, but is usually computationally expen-
sive since it requires solving the Navier-Stokes equation for many time steps.
To accelerate the process, we propose a machine learning framework which
predicts aerodynamic forces and velocity and pressure fields given a three-
dimensional shape input. Handling detailed free-form three-dimensional
shapes in a data-driven framework is challenging because machine learn-
ing approaches usually require a consistent parametrization of input and
output. We present a novel PolyCube maps-based parametrization that can
be computed for three-dimensional shapes at interactive rates. This allows
us to efficiently learn the nonlinear response of the flow using a Gaussian
process regression. We demonstrate the effectiveness of our approach for
the interactive design and optimization of a car body.

CCS Concepts: « Computing methodologies — Gaussian processes;
Real-time simulation; Physical simulation; « Applied computing — Engi-
neering;

Additional Key Words and Phrases: machine learning, fluid simulation,
Gaussian process, parameterization

ACM Reference Format:

Nobuyuki Umetani and Bernd Bickel. 2018. Learning Three-Dimensional
Flow for Interactive Aerodynamic Design. ACM Trans. Graph. 37, 4, Article 89
(August 2018), 10 pages. https://doi.org/10.1145/3197517.3201325

Authors’ addresses: Nobuyuki Umetani, Autodesk Research, Toronto, Canada, n.
umetani@gmail.com; Bernd Bickel, IST Austria, Vienna, Austria, bernd.bickel@ist.ac.at.

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3197517.3201325.

Submission ID: 285. 2018-05-19 12:58. Page 1 of 1-10.

1 INTRODUCTION

Computational Fluid Dynamics (CFD) has become an indispensable
component in the field of engineering and computational fabrica-
tion for design evaluation and optimization. Successful applications
include improving the aerodynamics of cars and airplanes, refining
heating, ventilation and air conditioning in architectural planning,
or the optimization of casting and injection molding in manufactur-
ing. Many of these applications would benefit from an interactive
design approach. However, analyzing a design is usually computa-
tionally expensive, as it requires repetitively solving a system with
many degrees of freedom over many time steps. Although modern
design tools allow the user to edit the shape interactively, computa-
tion times often prohibit the interactive visualization, exploration,
and optimization of shapes and their surroundings based on CFD
simulations. This problem is extremely challenging, even when
real-time simulation capabilities are available, i.e., the simulation of
individual time-steps at real-time rates, because evaluating a design
in simulation may require many time steps.

In this paper, we suggest a novel approach to achieve real-time
CFD performance based on a data-driven method. While CFD gener-
ally refers to fluid simulation for engineering purposes, we limit the
scope to the evaluation of aerodynamic forces and flow around an
object given that it is moving at a constant speed in a single-phase
fluid (e.g., air flow around cars or airplanes). Our approach enables
drastically faster evaluation by constructing a reduced model be-
tween input and output based on pre-existing data. Our model
takes a 3D shape as the input, and outputs a drag coeflicient, fluid
pressure on the surface and velocity field around the shape. The
nonlinearly and globally coupled relationship between input and
output is learned using the Gaussian Process (GP).

A key challenge in applying machine learning to CFD problems
is the parameterization of the input and output. As most machine
learning approaches take fixed dimensional vectors as input and

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201325
https://doi.org/10.1145/3197517.3201325

89:2 « N. Umetani et. al.

output, we need to parameterize (i.e., represent as fixed dimensional
variables) the input 3D shape and output pressure field on the shape
and velocity field around the shape. To address this problem, we
present a novel approach for parameterizing the 3D shape and volu-
metric field around it for machine learning based on the PolyCube
map [Tarini et al. 2004]. The PolyCube map represents arbitrary 3D
shapes by deforming a set of cubes. By deforming the space around
the cubes, we also achieve a natural parameterization of the field
around arbitrary 3D shapes. Our PolyCube-based shape and field
parameterization is extremely efficient and can be done in real-time
with a small distortion.

Our proposed representation features a fixed-length parameteri-
zation of the shape and field, which allows a GP to easily learn and
predict their relationship. As a demonstration, we constructed an
interactive aerodynamic design tool where the user can edit a shape
while getting real-time feedback on pressure distribution on the
surface and the air flow around the shape. Our tool also visualizes
reliability of the prediction as machine learning is unreliable when
input is very different from ones in the training data. The main
contributions of this work are:

e A novel, computationally efficient parameterization of 3D
shapes and volumetric fields based on the PolyCube map.

o A regression framework for three-dimensional flow around
an object.

e An interactive interface for aerodynamically efficient design.

2 RELATED WORK

Reduction techniques for fluid simulation. Model reduction tech-
niques perform simulations in a lower dimensional representation
of the original simulation domain, thereby decoupling the grid res-
olution from the simulation complexity. In the computer graphics
community, Treuille et al. [2006] introduced model reduction for
the real-time simulation of incompressible fluids. Later, this tech-
nique was extended to modular tiles that can be assembled during
the runtime to adapt the domain and simulate novel fluid config-
urations [Wicke et al. 2009]. For moving solids, model reduction
can also be conducted on a moving grid [Cohen et al. 2010]. To
enable the reduced simulation of fluid flow around a deformable
object, Stanton et al. [2013] suggest a nonlinear Galerkin projection
approach to construct nonlinear bases. The subspace integration is
accelerated by the optimized cubature scheme [Kim and Delaney
2013]. Eigenmodes of the Laplacian operator are used to construct
bases of the reduced model [De Witt et al. 2012]. Since a model
reduction approach solves the Navier-Stokes equation step-by-step,
it requires the running of a simulation for some time to obtain the
overall fluid behavior. In contrast, our approach directly learns the
results, circumventing the use of a Navier-Stokes solver during the
runtime. Stanton et al. [2014] use a state graph to synthesize ani-
mated fluid motion from examples, but it is unclear how this can be
applied to a high-dimensional input such as a free-form shape.

Machine learning for fluid simulation. Recently, accelerating fluid
simulations using machine learning has gained significant attention
Tompson et al. [2016] accelerate the pressure projection in Eulerian
fluid simulations using a neural network. Forces on Lagrangian

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

particles can be efficiently approximated using a regression for-
est [Ladicky et al. 2015]. Detailed splashing effects can be added
to Lagrangian particles using neural networks to model the regres-
sion of splash formation [Um et al. 2017]. Chu et al. [2017] use a
Siamese network to learn a distance metric between fine and coarse
simulation to synthesize the details of smoke. Bonev et al. [2017]
suggest a data-driven technique to map changing simulation condi-
tions such as user interactions to a reduced representation based on
space-time deformations. In addition, a network is trained to refine
the deformations and represent details present in the initial training
data. While these approaches either accelerate the computation of
individual time steps or add detail as a post-process, our approach
directly generates a time-averaged velocity field and pressure field.

Data-driven aerodynamics. There are few studies that use ma-
chine learning to predict aerodynamic forces for real-world appli-
cations. Pteromys [Umetani et al. 2014] constructs a relationship
between paper airplane shapes and aerodynamic forces based on
recorded flight trajectories of a large set of airplanes. The proposed
model is limited to assemblies of free-form planar shapes. Address-
ing this limitation, OmniAD [Martin et al. 2015] models aerody-
namic forces on an object from arbitrary directions using spherical
harmonics and learns model parameters from falling motions cap-
tured with a single camera. It also features the prediction of model
parameters of low-dimensional parameterized shapes. Schultz et
al. [2017] present a sampling scheme to capture nonlinear simula-
tion response by interpolating samples in the a low-dimensional
parameterized design space. Baqué et al. [2018] predict pressure
distribution on free-form 3D objects using graph convoluation. Our
approach learns aerodynamic forces of various free-form 3D objects,
in addition to the time-averaged velocity field around the object.

3D shapes in machine learning. When feeding a 3D shape into
a machine learning framework, a central question is how to pa-
rameterize the shape, i.e., how to express it as a set of variables.
Parameterization of free-form 3D shapes is a non-trivial task as
the shapes can have different resolutions, orientations, structures,
and topologies. This is significantly different from other domains,
such as natural language processing or vision, where text or image
datasets frequently come with a common parameterization [Xu et al.
2016]. For measuring shape similarity, many shape descriptors, such
as 3D shape histograms, were proposed. However, since the repre-
sentation only parameterizes the shape as a distribution of features,
it loses a significant amount of information concerning the original
shape, making it unsuitable for our regression problem.

Recently, a number of deep neural network architectures have
been proposed for 3D objects. These explore multiple views of a 3D
shape [Su et al. 2015] or voxel-based representations [Wang et al.
2017; Wu et al. 2014] as inputs. Instead of using descriptors, these ap-
proaches take a more direct representation of a three-dimensional
shape as an input. However, these implicit shape representation
approaches are not desirable for our regression problem since pa-
rameters change discontinuously with respect to the continuous
shape change. PointNet [Qi et al. 2016] explicitly encodes the 3D
geometry using a set of randomly distributed points on the surface.
However, it is difficult to discretize volumetric fields consistently
with such a grid-less point-based discretization.

Submission ID: 285. 2018-05-19 12:58. Page 2 of 1-10.

Learning Three-Dimensional Flow for Interactive Aerodynamic Design « 89:3

»

/ PolyCube surface

parametric surface

GAUSSIAN PROCESS
REGRESSOR

accuracy
A~ | prediction
/ 03 \
} 02 04

Ca=031

D =

pressure field drag coefficient

training data

L three-dimensional _J
triangle mesh conforming grid

velocity visualization

velocity field

Fig. 2. Overview of our method.

Addressing this problem, our shape representation is based on
deforming a template mesh. While Umetani [2017] deforms a cube
surface to parameterize a 3D shape, we further extend this approach
by deforming a PolyCube. The PolyCube approach allows us to pa-
rameterize a wider variation of shapes (see Fig. 10) and to construct
a hexahedral mesh outside the shape (see Fig. 5). As years of studies
show, PolyCube mapping is suitable to parameterize a wide range
of three-dimensional shapes [Fang et al. 2016; Huang et al. 2014;
Tarini et al. 2004]. While these works focus on offline parameteri-
zation quality optimization, our focus is real-time computation for
generating machine learning input shapes and output fields.

3 OVERVIEW

User interface. Our machine learning framework takes a shape S
and outputs drag coefficient cg, a velocity field ¥ around the shape
and a pressure field p on the shape. The drag coefficient shows the
magnitude of drag force with respect to the projected frontal area
and is the most important indicator of aerodynamic efficiency. The
drag coeflicient c; takes a value between 0.2 and 0.6 for typical
cars (e.g., 0.57 for a Hummer H2 and 0.30 for a Toyota Corolla).
The predicted drag coefficient is shown with a possible error range
because the prediction via machine learning is not perfect for un-
known inputs (see Fig. 2-top rightmost). These predicted values are
time-averaged as they dynamically fluctuate over time. The pressure
field is visualized as a color contour on the object’s surface and the
velocity field is visualized with streamlines.

We do not have specific restrictions on the input shape repre-
sentation, which we demonstrate using two popular shape repre-
sentations: triangle meshes and boundary representation (B-Rep)
models, whose surfaces are defined by patches of parametric sur-
faces. These shapes can be edited freely with standard shape editing
operations (e.g., free-form deformation, changing the position of
control points, etc.). Topology change is allowed in the input, i.e.,
the user can change the topology of the B-Rep by inserting an edge
inside a patch or by adding a control point to an edge. During the
editing, the tool continuously updates the visualizations.

Computational pipeline. Figure 2 illustrates an overview of the

runtime computation. We first convert the input shape into a set of
depth images that are taken from multiple orthogonal orientations.

Submission ID: 285. 2018-05-19 12:58. Page 3 of 1-10.

From the depth images, we construct a PolyCube-based representa-
tion (see Sec. 4), to parameterize the shape and velocity and pressure
fields. The pressure regressor estimates pressures at the grid points
on the shape and the velocity regressor estimates velocity at grid
points around the shape. We construct such regressors based on the
Gaussian Process (see Sec. 5).

4 PARAMETERIZATION OF 3D SHAPE AND FIELD
4.1 Shape Parameterization for the Regression Problem

In theory, state-of-the-art machine learning techniques such as
deep neural networks have the capability to approximate arbitrary
multivariable functions [Hornik 1991]. However, in practice, a huge
amount of training data is required to represent a high-dimensional
highly nonlinear function while avoiding over-fitting. How well
the regression predicts outputs for previously unseen data (i.e., the
generalization error) depends heavily on the properties of the input
and output data. Three factors are usually desired:

(fix) The input and output vectors for regression should have
fixed dimensions.

(compact) The dimension of the input and output vectors should
be as small as possible to avoid redundancy.

(linear) The relationship between input and output should be
as linear as possible to avoid complicated models, which are
difficult to train from a small amount of data.

Table 1. Comparison of shape and field parameterizations.

(fix) (compact) (linear)
our parameterization| O @) o)
B-Rep| X O (@)
3D SHAPE triangle mesh| X) o
multi-view projection| O X X
voxel| O X X
SDF on a Cartesian grid| O X o)
our parameterization| O @))
VOLUMETRIC
FIELD tetrahedra mesh| X (@) o)
values on a Cartesian grid[O o) X

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

89:4 « N.Umetani et. al.

Unfortunately, these desirable features are difficult to satisfy si-
multaneously. Table 1 compares common parameterization (repre-
sentation) approaches of a 3D shape and field. Most shape editing
tools operate with boundary representation (B-Rep) models or tri-
angle meshes. However, the number of parameters changes as the
topology of these representations is modified; for example, by in-
serting new edges and points or by subdividing or reconnecting the
triangle mesh. Representing shapes using density values on multi-
view projections or a three-dimensional Cartesian grid approach
alleviates this problem, but induces significant nonlinearity, making
the regression difficult. As illustrated in Figure 3-top, a continu-
ous change in the shape results in abrupt changes of the velocity
and density at grid points which are passed by the boundary. The
volumetric and surface field representations suffer from a similar
nonlinearity problem when parameterized on a Cartesian grid. Pa-
rameterizing the shape using the signed distance field (SDF) instead
of a density function reduces this problem. However, the dimension
of the parameters is still large as we express the shape using a 3D
field, even though the input shape is locally two-dimensional. Rep-
resenting the volumetric field with a tetrahedral mesh for various
shapes is difficult without changing its topology.

TYPICAL
PARAMETERIZATION
ON A CARTESIAN GRID

OUR
PARAMETERIZATION
ON A DEFORMING GRID

(continuous velocity change)

Fig. 3. Top: Small changes to a parameterized shape and field on a Cartesian
grid induce discontinuities. Bottom: We deform the grid continuously to
reduce nonlinearities.

Our solution is to deform the grid continuously on and around
the shape (see Figure 3-bottom). The deformed grid shares the in-
terface with the input shape. Hence, the boundary does not cross
grid points, reducing the nonlinearity in the parameterization. The
deformation of the entire volumetric grid is uniquely determined by
the surface grid. Hence, if we specify the surface grid, we can define
the volumetric field just by giving the values at the grid points. In
the following section, we explain how we construct such a grid
based on the PolyCube map.

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

4.2 Construction of the PolyCube Grid

The parametrization of the 3D shape is based on the work [Umetani
2017] in which we convert the input shape into GPU-computed
depth surfaces and we then project the template mesh in the static
normal directions to the depth surface. The key difference is the use
of PolyCube instead of a single cube for the template mesh to pa-
rameterize a wider range of shapes by choosing the PolyCube close
to the inputs. In this paper, we define a PolyCube as a set of axis-
aligned unit cubes that are connected face-to-face. Such a PolyCube
is manually modeled with an interface similar to MineCraft [Mo-
jang 2009]. Aside from continuous shape and field representation,
another important advantage of the cube representation is that we
can easily construct a grid to parameterize the field outside the
input shape by filling additional cubes outside the input cubes (see
Figure 4-a). Different to the original PolyCube map [Tarini et al.
2004], we hierarchically construct the mapping by projecting the
mesh in the normal direction similar to the Normal Mesh [Guskov
et al. 2000]. This allows us parameterizing a concave shape with a
lower number of variables — instead of storing three-dimensional
coordinate values for all the vertices we store a scalar height map —
and fewer parameters come in handy for machine learning. We also
show our hierarchical construction of the parameterization benefits
the reguralization of the machine learning (see Sec. 5.3).

Point classification. We start with a single, user-provided Poly-
Cube model as an approximation of the various input shapes. We
name the grid generated from an input and exterior cube as a level-0
grid. The level-0 grid has three types of points: corner points P,
surface points Ps and exterior points .. These points are clas-
sified based on how many input cubes belong to the points (i.e.,
the valence). If the valence is an odd number, the point is a corner
point that is located at the corner of the input PolyCube. On the
other hand, the exterior points have a valence of zero as they do
not belong to the input cube. If the valence is non-zero and an even
number, since we do not construct a grid inside the shape, the point
is a surface point that is located on an edge or face of the input Poly-
Cube. For corner and surface points, we define the normal directions
by averaging the normals of the input PolyCube faces where these
points belong.

Corner point placement. We first project the corner points onto
the object’s surface. We start initializing the location of corner
points by translating and scaling the input PolyCube in the axes
directions such that the bounding boxes become the same. Then,
we project the corner points onto the input shape by finding the
nearest intersection point.

Surface and exterior point placement. Given the positions of the
corner points, we move the surface points and exterior points to the
locations linearly interpolated from the corner points (see Figure 4-
d). For the surface points, which are located on the faces or the
edges of the input PolyCube, we apply two-dimensional Mean Value
Coordinates (MVC) [Floater 2003] to move them together with the
corner points. As a consequence, the surface points on the edge of
the PolyCube move as the linear interpolation of the two endpoints
with the ratio of their distances. A surface on a face of the input
PolyCube moves linearly with respect to the corner points that

Submission ID: 285. 2018-05-19 12:58. Page 4 of 1-10.

Learning Three-Dimensional Flow for Interactive Aerodynamic Design « 89:5

B input cube
B exterior cube
e corner point

m surface point

a exterior point

(d)

% surface
subdivision point

A exterior
subdivision point

Fig. 4. Our construction scheme of a PolyCube parameterization.

outline the face. For exterior points, we use the 3D extension of
MVC [Ju et al. 2005] to move the points linearly with respect to the
position of all the corner points. The MVC determines the weight
that transfers the movement of corner point p. to a movement of an
exterior point and the surface points. These weights are dependent
only on the initial PolyCube construction, thus we only need to
compute them once. After the linear interpolation, we project the
surface point onto the object surface. The set of projection heights
H; for all the surface points specifies how much these points are
moved toward the normal direction, encoding the shape at the
coarsest level together with the positions of the corner points P..

Subdivision. So far, we have constructed a coarse grid such that
the boundary between the input and exterior cubes is shared with
the input shape. We subdivide the exterior cube to construct further
detailed parameterization of the input shape and the output field
(see Fig. 4-f). Although we can selectively choose which exterior
cubes are subdivided, in this paper, we uniformly subdivide the
exterior cubes such that all cubes have eight children. New points
are introduced at the middle points of the edges, the center of the
four corners of the faces, and the cell center of the parent grid. If a
face or edge subdivision point is on the boundary facing the interior,
we project it to the input shape in its normal direction. The normal
direction is computed as the normal on the input PolyCube at the
corresponding location. We denote the normal projection heights
at the surface subdivision points as H., where i is the subdivision
level. Fig. 5 shows an example of the subdivision.

Submission ID: 285. 2018-05-19 12:58. Page 5 of 1-10.

= - iy

(a) input shape (b) PolyCube

(c) bounding box fitting

level-1 i S level-2
(e) volumetric grid

Fig. 5. Three-dimensional example of the subdivision of a level-0 grid. The
color visualizes the accumulated normal projection heights up to the current
level.

5 MACHINE LEARNING
5.1 Data for Regression

So far, we have explained our parameterization framework that
encodes shape and field in fixed dimensional vectors while also
avoiding excessive nonlinearities between them. In this section, we
explain how we construct the regressor to approximate the output
parameter vector from the input parameter vector.

Dimensional analysis. We start with four parameters as inputs:
shape S, incoming wind velocity Ve, mass density p, and viscosity
p1. We first reduce these four parameters into two using dimen-
sional analysis. The dimensional analysis determines how physical
phenomena can be parameterized with a minimum number of in-
dependent non-dimensional variables. Non-dimensionalization is
convenient for machine learning of simulations because it reduces
the number of parameters without loss of accuracy. Furthermore,
we can reduce the amount of training data by avoiding redundant,
i.e., dynamically similar, examples. OmniAD [Martin et al. 2015]
uses the Buckingham IT theory to construct a model of aerodynamic
forces on 3D objects. Similarly, our problem is parameterized by
the Reynolds number Re = pLV,/p and the non-dimensionalized
(i.e., normalized) shape S’ which is uniformly scaled such that the
representative length becomes one. The scaling of the shape can
be done in the parameter space by scaling corner point positions
f’c and projection heights H. Here, we define the representative
length as the diagonal length of the bounding box of the input
shape S. From these non-dimensionalized input parameters, we ob-
tain non-dimensionalized velocity and pressure values as 3" = 9/ Vo
and p’ = p/(pVZ). We can easily compute the final velocity and
pressure values by scaling them with Vi and pV2, respectively.

Input and output vectors. In Section 4, we explained our polycube
parameterization. Since our problem setting (i.e, a single object in-
side a constant flow) is invariant to translation and the grid moves
together with the object, we can remove the translation compo-
nent from the input parameters. We move the corner points such

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

89:6 « N.Umetani et. al.

that the averaged position of the corner points rests at the origin.
The input parameter vector becomes a concatenation of the scaled
and translated corner point positions, and projection heights of the
surface points x = {f’c, H;, H}s, Hgs, ...}. We have three regres-
sors: for drag coefficient, velocity, and pressure. Thus, the level of
subdivision can be chosen differently for each of them. The ma-
chine learning outputs a vector concatenating the drag coefficient
and the nondimentionalizeds values at all grid points for velocity
v = {5(’), 5{, ...} and pressure p = {p(’), p{, .

5.2 Gaussian Process

We choose Gaussian Process (GP) regression for inferring the CFD
simulation data. The advantages of a GP in our context is four folds:
(i) The GP can express a highly nonlinear relationship between input
and output from a small number of training samples compared to
the dimension of inputs (T <« M). (ii) The GP is a probabilistic model
that interpolates values from the training data probabilistically, i.e.,
we can obtain the confidence for the regression result aside from the
regressed output itself. (iii) We can optimize its hyperparameters
directory from the training data to increase the accuracy. (iv) We can
handle noise in the training data. Thus, it is robust to the over-fitting
problem.

Leaving the comprehensive details of GP to a textbook [Ras-
mussen and Williams 2005], we only briefly explain its key concepts.
Here, we rely on common notations in statistic such as E(-) for
the expected value and p(-) for the probability. Suppose we would
like to predict a scalar value y* from a high-dimensional input
x* € RM given the set of training pairs D = {(y", X")}nNzl, where
the expected value of the output is zero E[y] = 0. We denote the
outputs in the training data concatenated with the unknown output
as Y = {y,...,yN,y*}. The GP assumes that a set of outputs Y
follows a multivariate Gaussian distribution p(Y) = N(0, K), where
K denotes the (N + 1) X (N + 1) covariance matrix. The desired
solution is inferred from the conditional probability distribution of
the output y* given the known training data p(y*|D).

Each element of the covariance matrix K is defined as the ex-
pected value of the multiplication of two outputs K¥ = E[y'y/],
where 1 < i,j < (N +1). Intuitively, the diagonal entry K* provides
information on the variance of the output y¥, while the off-diagonal
elements of the covariance matrix K%/ gives the magnitude of cor-
relation between the output y’ and / (i.e., the similarity of the y’
and /). The GP regression models an element of the covariance
matrix from the corresponding inputs using the kernel function
KY = k(x!,x/). Our choice of the kernel function is

M
k(x',x/) = 65 exp {—Z@k(xli_xi)z}+9n5if' (1)
k=1

The first term in (1) defines the similarity of the two inputs x
and x/ in terms of the similarity of the outputs y’ and y/. The
hyperparameter 0 is a positive uniform scaling factor, while 6 =
{61, ...,0p} > 0are positive scaling factors for the each dimension
of the input. This squared exponential covariance function is one of
the most favored choices of kernel functions in statistics because it
can be shown such a kernel corresponds to linear regression with
infinite number of basis functions. The second term of (1) models

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

Gaussian white noise with variance 6,, > 0 assumed in the output.
These hyperparameters 0s, 0, 6, are optimized to agree with the
dataset (see Sec. 5.3).

Given the covariance matrix K, which defines how much each
elements are relevant, we can compute the conditional probability
of y* under the training data D is given as

p(y*1D) = N(w'y, k(x*, x*) - w'k"),)
w* =kK,) (3)
K* = {k(x!,x), .. kN, x)T (4)

The K¢ is the N X N covariance matrix in the dataset Klz]) =
k(x!, /).

We apply GP regression to the regression of the drag coefficient
cg. As the GP requires the output value to have a zero mean, we
offset the drag coefficients with their average from the training
data y = ¢4 — ¢4, where ¢; means the average of the c¢; from the
training examples. How much the regression result is trustworthy
is visualized to the user as the range of ;1 + o where the probability
to fall in that range is about 69% based on a normal distribution.

N
cg(x*) =wcy + 0'Cy, where 0¥ =1- Z wi. (5)
n=1
Here ¢ is a vector concatenating cg values in the training data.
The GP regression scheme can be seen as interpolation from the
training outputs with weight w*. Here we used the same weight to
interpolate the training data for the pressure field and velocity field
regression

px*) = WP + w™p, 6)
v(x*) = w'V + o'V, 7)

where P and V are matrices stacking training data in rows. The
weight w* is optimized for the drag coefficient and reusing them
for pressure and velocity regression is probably not the optimal.
However, it is much computationally efficient compared to opti-
mizing the weight for every element of the velocity and pressure.
Moreover, the result shows the weight have much better accuracy
compared to the naive approach (see Sec.6). We leave the rigorous
weight optimization for the pressure and velocity as a future work.

5.3 Hyperparameter Optimization

Given 6 = {1,...,1} and 0, = 0, the above interpolation scheme
becomes equivalent to a radial based function (RBF) network, which
measures the difference between inputs as a function of uniform
Euclidean distance. When the dimension of the input M is very
large, the naive Euclidean distance suffers the curse of dimensionality,
where the distances to the example inputs fail to give information of
the closeness of the outputs. To alleviate this problem, we optimize
0 to emphasize elements of x that is relevant to the output. We
cannot optimize all the elements of 6 as its dimension is much
higher than the number of the training sample without assuming
smoothly varying parameters (i.e., regularization). The smoothness
distribution of the parameter over the shape is reasonable because
the positions of the neighboring nodes have strong correlations and
possibly the similar influence to the outputs. Our proposed PolyCube

Submission ID: 285. 2018-05-19 12:58. Page 6 of 1-10.

Learning Three-Dimensional Flow for Interactive Aerodynamic Design « 89:7

representation naturally supports this approach. We directly specify
the weights at the coarse subdivision level 8. and obtain the smooth
weights for the remaining nodes in the finer subdivision level by
interpolation. The interpolation scheme is based on the subdivision
scheme in Sec. 4.2 — we interpolate the weight by averaging the
two end points of an edge if the fine point is on the edge, and by
averaging four corner points of a quadrant if the fine points are in
the quadrant.

We denote O for all the hyperparameters — uniform kernel weight
05, the weights for coarse nodes 0. and noise variance 6,. We
optimize these hyperparameters using the maximum likelihood
method such that we have maximum probability of the training
outputs under the optimized parameter as

Ooptimum = arg méix logp(y|®) = —L(0), 8)

1 1 _ N
L) = S 1g [Kp ()] + -y Ky (O)y + - log(27), (9)
where s > 0, 6. > 0, 6, > 0. (10)

As the gradient of the log-likelihood in eq. (9) can be analytically
computed [Rasmussen and Williams 2005], we solve this constraint
optimization problem using the projected gradient decent method.

6 RESULT

Training data generation. We start with describing the car aerody-
namics example we created using our framework. We then prepare
the input shapes from the “car” category of ShapeNet [Chang et al.
2015] (see Figure 1-left). We manually modify the shape to remove
the side mirrors, spoilers and tires. Then, we solve the Navier-Stokes
equation in a highly detailed spatial grid for many time steps until
we accurately obtain the time-averaged velocity and pressure fields.
The degrees of freedom in these simulations range from 600 k to
700 k. We simulate 10 seconds of air flow and average the results
of the last 4 seconds to obtain the training data. Each simulation
takes approximately 50 minutes. Note that our machine learning ap-
proach does not depend on the fluid solver. In our example, the fluid
flow is simulated using our in-house finite element Navier-Stokes
solver with the k-epsilon turbulence model and SUPG stabiliza-
tion [Zienkiewicz et al. 2013]. The simulation runs on a tetrahedral
mesh that conforms to the boundary and we adaptively refined the
mesh around the surface and the back of the car to resolve the bound-
ary layer and separated vortices resulting from non-slip boundary
condition. We used realistic physics parameters for the car simula-
tion with the car driving in air at 72 km/h speed (Re = 5 x 10°).

max

[coarse control points|

0

_— —
Fig. 6. Optimized weight 0 in the computation of the kernel. We set the
control points at the nodes on the coarse level (left) and smoothly interpolate

their values (middle and right). The weight illustrates how relevant the
underlying shape is to the prediction.

Submission ID: 285. 2018-05-19 12:58. Page 7 of 1-10.

Figure 5 illustrates the PolyCube and the resulting grid. This
model is built on a PolyCube with three cubes assuming sedan or
wagon-type cars. To encode the shape of the car, we choose level-4
subdivision for the input shape M = 3698, level-4 subdivision for
the surface pressure discretization (3682 degrees of freedom), and
level-3 for the velocity on the spatial volumetric grid (88494 degrees
of freedom). The pressure and velocity values are sampled at the grid
points, whose location can be computed from the input parameters.
We prepare 889 pairs of input shapes, and the output simulation
data consists of the drag coefficient value cg, pressure and velocity
field data computed with the CFD simulation. All training data is
included in the supplemental material*.

Training. We optimize the hyperparameters according to the max-
imum likelihood method in (8). The hyperparameter optimization
is the most time-consuming training step, taking approximately
30 minutes. With the optimized hyperparameters, the GP does not
require expensive computations aside from the computation and
inversion of the kernel matrix, which is done only once. We trained
and ran the real-time demonstration program, as shown in the ac-
companied video, on a MacBook Pro 2014 model with a 3.0 GHz Core
i7 CPU using the Intel MKL Library ™. Fig. 6 shows the color-coded
resulting optimized spatially-varying weights € in the kernel com-
putation. Intuitively, the weights reflect the importance of specific
input positions in predicting the output. In our example, the weight
is high on the windshield and the A-pillar, while low around the
front grill and the rear side. This is reasonable because the bound-
ary layer grows and separates around the windshield and the air
is stagnant at the front and back of the car. We also have analyzed
the impact of the hyperparameter optimization. Fig. 8-right shows
a comparison of the error with and without weight optimization.
The unoptimized weight scenario is equivalent to a naive RBF inter-
polation where all the weights are the same. With hyperparameter
optimization, we can observe a significant improvement in accuracy,
with an error decrease of about 68% (see Fig. 8).

Performance. We show our runtime aerodynamic design tool in
Figure 1 and the accompanying supplemental video. While the user
is interactively modifying the shape by moving the control points
of B-Rep or the free-form deformation, the system consistently
maintains 10 > frames per second for all shape-editing opera-
tions. By showing this drag force in real-time, the user can de-
sign aerodynamically-efficient shapes based on interactive trial-
and-error shape exploration. The memory footprint for the three
regressors (cg, pressure and velocity) combined is 270MB.

Accuracy. To examine the accuracy of our model, we conducted
9-fold cross-validations, i.e., we split all the data into nine equal-
sized subgroups and executed the cross-validation five times. For
each cross-validation, we use one subgroup for validation and the
rest for training. Fig. 7-left shows the distribution of the magnitude
of errors with respect to the predicted standard distribution ¢*. This
shows that when the confidence is low (i.e., the standard deviation is
high) the error tends to be large. Fig. 7-right shows the distribution
of the errors divided by the standard deviation. When the errors

“http://www.nobuyuki-umetani.com/publication/mlcfd_data.zip

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

http://www.nobuyuki-umetani.com/publication/mlcfd_data.zip

89:8 « N.Umetani et. al.

i’)’ 30 i’j 30 nf)rmal distribution N'(0 1)

g 40 540 1

< s NN

@ 30 @ 30 -HM

Gy Gy) \

o > — 11§

5 20 520 i

))

g 10 g 10 \

z z s —
0 OC."EO,""C."‘.O_"‘.O."’.C.‘"Q

TagTTSSS - —dan

error in ¢y normalized with o

Fig. 7. (Left) Distribution of the magnitude of errors with respect to the
predicted standard distribution. (Right) Histogram of the errors divided by
the predicted standard distribution.

are normalized by their standard deviation, they follow the normal
distribution N(0, 1).

Fig. 8 compares the accuracy of the drag coefficient with other
regression approaches including linear regression, random forest,
GP with optimized uniform weight, and GP without hyperparameter
optimization (@ = 1). Fig. 8 shows the standard deviation of the
errors of the drag coefficient with respect to the size of the training
set for various regression strategies including linear regression
with Ly reguralizer, random forest, GP with optimized uniform
weight, GP without hyperparameter optimization (6 = 1) and neural
networks with and without the 50% dropout [Srivastava et al. 2014]
. For the regression forest method, we used the implementation
in the scikit-learn library with its default parameters. The neural
network we used here is a perceptron with one hidden layer that
has ten neurons with the logistic activation function. We trained
the neural network until convergence (sum of squared error was
less than 107° times the initial error). We observed that the neural
network regression significantly performed worse in validation than
the others because of the overfitting problem as the number of the
training data (~ 0.8k) is much smaller than the dimension of the
inputs (~ 3.7k). The dropout alleviated the overfitting problem to

some extent, but the result was still worse than the other regressors.

We are surprised to find the linear model is very competitive. Thanks
to our PolyCube parameterization, we managed to make the input
and output relationship close to linear. We include a Python script
for linear least square fitting in the supplemental material*.

0.06
0.05 ~Neural Network (without dropout)
0.04 — —— Neural Network (with dropout)
;c: 0.03 —Gayssmn Process (unoptimized
weights)
8=
— Random Forrest Regression
2002 L
=k —— Least Square Fitting (linear model)
[

Gaussian Process (uniform
optimized weights)

—— Gaussian Proces (distributed

0.01 S .
0 100 200 300 400 500 600 700 800 optimized weights)

number of training samples N
Fig. 8. Convergence of the standard variation of the errors in the drag

coefficient prediction with respect to the training size for different regression
strategies.

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

Compared to the other approaches, our regression achieves the
highest accuracy in predicting the c¢; value. The standard devia-
tion of the error is about +0.012, which relates to a relative error
of less than +3.4% when normalized with an average drag coeffi-
cient of the example ¢4 = 3.5. According to an extensive study by
SAE International, the standard deviation of the c; values obtained
from ten large different wind tunnel testing facilities throughout
the world is +2.2% and the difference can be up to 5% [Buchheim
et al. 1983; Hucho 1998]. Allowing the assumption that the offline
simulation would perfectly reproduce reality, our learned flow ac-
curacy would be comparable to that of a wind tunnel. However, in
practice the offline simulation is not perfectly accurate, leaving us
with an unknown error relative to the true real-world behaviour.
Our goal in this paper is to show that we can efficiently reproduce
the time-consuming offline simulation result. Because no dataset of
wind tunnel experiments with many different car shapes is publicly
available, we leave the physical validation of the accuracy as future
work.

We also evaluated the errors in the pressure and velocity fields.
Fig. 9 shows the distribution of errors in the velocity and pressure
fields obtained from the cross-validation. The horizontal axis shows
the mean squared errors for the velocity and pressure values, while
the vertical axis shows the frequency of the errors. Even in the
case of the largest error in the validation, we did not observe a
significant difference in the velocity and pressure fields compared
to the ground truth. This graph also suggests that the distributed
weight optimized for ¢y improves the accuracy of the velocity and
pressure fields prediction in comparison with the naive weight 8 = 1.

average accuracy case one of the worst accuracy case

regression\
regression "\

/ground truth
/ground truth

average=8.1
after optimization

(5 8

EXO 3120 average=13.7

g " £100 before optimization

B 3

L‘a cs 80

;-40 > 60

Q Q

"£20 =

N 2

i 0 | Jl |IJ.I....|.||||||| Tl = 0 I r IJJIIJ:..I. -
0 0.5 1 1.5 2 2.5 3 0 10 20 30 40

velocity error pressure error
Fig. 9. (Top) Comparisons between ground truth velocity and pressure fields
and regression results for one average accuracy case and one worst accuracy
case. (Bottom) Frequency of the squared norm error of the velocity field (left)
and pressure field (right).

Submission ID: 285. 2018-05-19 12:58. Page 8 of 1-10.

Learning Three-Dimensional Flow for Interactive Aerodynamic Design « 89:9

More specifically, mean squared errors averaged over the example
decreased 47% for velocity and 41% for the pressure. In terms of
the maximum absolute value of the errors in the velocity and the
pressure fields, their averaged value over the examples are 8.80
m/s and 126 Pa, respectively, using the optimized weight. In the
supplemental material, we include about one hundred comparisons
between ground truth and machine learning results.

’

-;I‘éRUS (a) 3D printed shape

AN

Cd=026

(b) initial shape (c) final shape

Fig. 10. Examples of our PolyCube 3D shape and field parameterization for
a various shapes. The resulting aerodynamically efficient shape can be 3D
printed and attached to a car (bottom-rightmost).

Parameterization of more complex shapes. Our shape and field
parameterization technique is not limited to car-like, almost con-
cave shapes. We can parameterize a wide variety of shapes starting
from a PolyCube that approximates the shapes. Figure 10 shows
examples of our shape parameterization including an airplane, a
dolphin, a flying saucer, a spaceship, and a torus. While the previous
technique [Umetani 2017] fits a cube into the shape, our PolyCube-
based technique can achieve better quality (i.e., less bias) in the

Submission ID: 285. 2018-05-19 12:58. Page 9 of 1-10.

parameterization for concave shapes. Note that for the torus exam-
ple (Fig. 10-bottom top left), there is no way to continuously fit a
cube into this genus-1 shape, thus the previous technique [Umetani
2017] results in a failure.

For the torus model, we also construct a machine learning CFD
model based on 50 training examples. These example shapes are cho-
sen randomly from the recording of the user’s modeling sequence.
For the torus model, we assume that the shape is used as a car-top
sign, so we set the dimension of the torus about 10 cm in diameter
and 4 cm in thickness. We encourage the readers to look at the
supplemental material for the interactive modelling sequence of
the car-top sign while getting the feedback from the real-time CFD
estimation. Fig. 10-(b) and -(c) show the CFD simulation results on
the initial torus shape and final torus shape after the editing. Using
our system, the torus has 15% less drag coefficient (from 0.31 to
0.26) compared to the original undeformed torus shape based on
the simulation. The bottom rightmost image in Fig. 10-(a) shows
the resulting aerodynamically-efficient torus shape we 3D printed.

7 LIMITATIONS AND FUTURE WORK

Currently, the user needs to manually specify a PolyCube as a rough
representation of the input shape. Automatically generating such
a PolyCube representation would further reduce the user’s work-
load. We currently use a single regression model which is built on a
single PolyCube. An interesting avenue for future work would be
to explore the construction of multiple regression models for dif-
ferent PolyCube configurations and switch them during the user’s
interaction. This would require developing a reliable framework to
determine decision criteria and methods for choosing and switching
between PolyCube representations.

In this work, we constructed a parameterization by projecting
points of a subdivided PolyCube onto the input shape in predeter-
mined directions. While this parameterization can handle a wide
range of shapes similar to the input PolyCube, it is still challenging
to parameterize a highly concave shape or very sharp and thin fea-
tures (e.g., side mirrors) without excessive distortion of the grid. We
are planning to increase the representation capability by adaptively
changing the resolution of the input template PolyCube in regions
in which we know a priori that high curvatures might occur.

We believe our approach could be extended to a wide range of
other complex physical phenomena, which we plan to investigate
in the future. Since our approach parameterizes the shape and as-
sociated 3D field, we can parameterize boundary conditions and
the solution of many partial differential equations such as the ther-
mal fluid equation, supersonic fluid equation, or electromagnetic
fluid equations. Finally, we think it would be exciting to extend
our method to include a state graph and/or a temporal frequency
decomposition of the field. As an application, we are particularly
interested in biomechanical simulation (e.g., the simulation of flow
inside a heart or blood vessels), such that doctors can give more
reliable diagnostics based on preexisting simulation data.

8 CONCLUSION

We have presented a technique to use to interactively predict how
fluid flows around a three-dimensional object given its shape. Our

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

89:10 « N. Umetani et. al.

primary contribution is a novel interactive PolyCube representation
to parameterize the input shape and represent a field on and around
the shape. Using that parameterization, we successfully constructed
a regression model using Gaussian Process. Our method is fast
enough to be integrated into existing interactive shape modeling
tools. With the real-time feedback, the user can manually optimize
the aerodynamics of an object. We evaluated the accuracy of our
method by cross-validation, confirming a good match of our results
to ground truth simulation.

ACKNOWLEDGEMENTS

We thank anonymous reviewers and Ryan Schmidt for their com-
ments and advice. We appreciate the assistance from Rin Ishikawa
for the production of the supplemental video. This project has re-
ceived funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 715767 - MATERIALIZABLE).

REFERENCES

Pierre Baqué, Edoardo Remelli, Francois Fleuret, and Pascal Fua. 2018. Geodesic Con-
volutional Shape Optimization. CoRR abs/1802.04016 (2018). arXiv:1802.04016
http://arxiv.org/abs/1802.04016

B. Bonev, L. Prantl, and N. Thuerey. 2017. Pre-computed Liquid Spaces with
Generative Neural Networks and Optical Flow. ArXiv e-prints (April 2017).
arXiv:cs.GR/1704.07854

R. Buchheim, R. Unger, P. Jousserandot, E. Mercker, F. K. Schenkel, Y. Nishimura,
and D. J. Wilsden. 1983. Comparison Tests Between Major European and North
American Automotive Wind Tunnels. In SAE Technical Paper. SAE International.
https://doi.org/10.4271/830301

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M.
Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. 2015. ShapeNet: An Information-Rich
3D Model Repository. ArXiv e-prints (Dec. 2015). arXiv:cs.GR/1512.03012

Mengyu Chu and Nils Thuerey. 2017. Data-Driven Synthesis of Smoke Flows with
CNN-based Feature Descriptors. Transaction on Graphics (SIGGRAPH) 36(4) (Apr
2017), 14.

Jonathan M Cohen, Sarah Tariq, and Simon Green. 2010. Interactive fluid-particle sim-
ulation using translating Eulerian grids. In Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games. ACM, 15-22.

Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid Simulation Using
Laplacian Eigenfunctions. ACM Trans. Graph. 31, 1, Article 10 (Feb. 2012), 11 pages.
https://doi.org/10.1145/2077341.2077351

Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex Meshing Using
Closed-form Induced Polycube. ACM Trans. Graph. 35, 4, Article 124 (July 2016),
9 pages. https://doi.org/10.1145/2897824.2925957

Michael S. Floater. 2003. Mean Value Coordinates. Comput. Aided Geom. Des. 20, 1
(March 2003), 19-27. https://doi.org/10.1016/S0167-8396(02)00002-5

Igor Guskov, Kiril Vidim¢e, Wim Sweldens, and Peter Schrdder. 2000. Normal Meshes.
In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH *00). ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 95-102. https://doi.org/10.1145/344779.344831

Kurt Hornik. 1991. Approximation Capabilities of Multilayer Feedforward Networks.
Neural Netw. 4, 2 (March 1991), 251-257. https://doi.org/10.1016/0893-6080(91)
90009-T

Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun.
2014. ℓ1Basedd Construction of Polycube Maps from Complex Shapes. ACM
Trans. Graph. 33, 3, Article 25 (June 2014), 11 pages. https://doi.org/10.1145/2602141

Hucho. 1998. Aerodynamics of road vehicles : from fluid mechanics to vehicle engineering.
Society of Automotive Engineers, Warrendale, PA.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed
Triangular Meshes. ACM Trans. Graph. 24, 3 (July 2005), 561-566. https://doi.org/
10.1145/1073204.1073229

Theodore Kim and John Delaney. 2013. Subspace Fluid Re-simulation. ACM Trans.
Graph. 32, 4, Article 62 (July 2013), 9 pages. https://doi.org/10.1145/2461912.2461987

L’ubor Ladicky, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross.
2015. Data-driven Fluid Simulations Using Regression Forests. ACM Trans. Graph.
34, 6, Article 199 (Oct. 2015), 9 pages. https://doi.org/10.1145/2816795.2818129

Tobias Martin, Nobuyuki Umetani, and Bernd Bickel. 2015. OmniAD: Data-driven
Omni-directional Aerodynamics. ACM Trans. Graph. 34, 4, Article 113 (July 2015),
12 pages. https://doi.org/10.1145/2766919

ACM Trans. Graph., Vol. 37, No. 4, Article 89. Publication date: August 2018.

Mojang. 2009. Minecraft. (2009).

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016. Point-
Net: Deep Learning on Point Sets for 3D Classification and Segmentation. CoRR
abs/1612.00593 (2016). arXiv:1612.00593 http://arxiv.org/abs/1612.00593

Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning). The MIT Press.

Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik.
2017. Interactive Design Space Exploration and Optimization for CAD Models. ACM
Trans. Graph. 36, 4, Article 157 (July 2017), 14 pages. https://doi.org/10.1145/3072959.
3073688

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15 (2014), 1929-1958. http:
//jmlr.org/papers/v15/srivastaval4a.html

Matt Stanton, Ben Humberston, Brandon Kase, James F. O’Brien, Kayvon Fatahalian,
and Adrien Treuille. 2014. Self-refining Games Using Player Analytics. ACM Trans.
Graph. 33, 4, Article 73 (July 2014), 9 pages. https://doi.org/10.1145/2601097.2601196

Matt Stanton, Yu Sheng, Martin Wicke, Federico Perazzi, Amos Yuen, Srinivasa
Narasimhan, and Adrien Treuille. 2013. Non-polynomial Galerkin Projection on
Deforming Meshes. ACM Trans. Graph. 32, 4, Article 86 (July 2013), 14 pages.
https://doi.org/10.1145/2461912.2462006

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-
view Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of
the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV ’15). IEEE
Computer Society, Washington, DC, USA, 945-953. https://doi.org/10.1109/ICCV.
2015.114

Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. PolyCube-
Maps. ACM Trans. Graph. 23, 3 (Aug. 2004), 853-860. https://doi.org/10.1145/
1015706.1015810

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2016.
Accelerating Eulerian Fluid Simulation With Convolutional Networks. CoRR
abs/1607.03597 (2016). arXiv:1607.03597 http://arxiv.org/abs/1607.03597

Adrien Treuille, Andrew Lewis, and Zoran Popovi¢. 2006. Model Reduction for Real-
time Fluids. ACM Trans. Graph. 25, 3 (July 2006), 826-834. https://doi.org/10.1145/
1141911.1141962

K. Um, X. Hu, and N. Thuerey. 2017. Liquid Splash Modeling with Neural Networks.
ArXiv e-prints (April 2017). arXiv:cs.GR/1704.04456

Nobuyuki Umetani. 2017. Exploring Generative 3D Shapes Using Autoencoder Net-
works. In SIGGRAPH Asia 2017 Technical Briefs (SA ’17). ACM, New York, NY, USA,
Article 24, 4 pages. https://doi.org/10.1145/3145749.3145758

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys:
Interactive Design and Optimization of Free-formed Free-flight Model Airplanes.
ACM Trans. Graph. 33, 4, Article 65 (July 2014), 10 pages. https://doi.org/10.1145/
2601097.2601129

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-CNN:
Octree-based Convolutional Neural Networks for 3D Shape Analysis. ACM Trans.
Graph. 36,4, Article 72 (July 2017), 11 pages. https://doi.org/10.1145/3072959.3073608

Martin Wicke, Matt Stanton, and Adrien Treuille. 2009. Modular Bases for Fluid
Dynamics. ACM Trans. Graph. 28, 3, Article 39 (July 2009), 8 pages. https://doi.org/
10.1145/1531326.1531345

Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and Jianxiong Xiao. 2014.
3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction. CoRR
abs/1406.5670 (2014). http://arxiv.org/abs/1406.5670

Kai Xu, Vladimir G Kim, Qixing Huang, Niloy Mitra, and Evangelos Kalogerakis. 2016.
Data-driven shape analysis and processing. In SIGGRAPH ASIA 2016 Courses. ACM,
4.

Olek C Zienkiewicz, Robert L Taylor, and P. Nithiarasu. 2013. The Finite Element
Method for Fluid Dynamics, Seventh Edition (7 ed.). Butterworth-Heinemann. http:
//amazon.com/o/ASIN/1856176355/

Submission ID: 285. 2018-05-19 12:58. Page 10 of 1-10.

http://arxiv.org/abs/1802.04016
http://arxiv.org/abs/1802.04016
http://arxiv.org/abs/cs.GR/1704.07854
https://doi.org/10.4271/830301
http://arxiv.org/abs/cs.GR/1512.03012
https://doi.org/10.1145/2077341.2077351
https://doi.org/10.1145/2897824.2925957
https://doi.org/10.1016/S0167-8396(02)00002-5
https://doi.org/10.1145/344779.344831
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1145/2602141
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1145/2461912.2461987
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2766919
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://doi.org/10.1145/3072959.3073688
https://doi.org/10.1145/3072959.3073688
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1145/2601097.2601196
https://doi.org/10.1145/2461912.2462006
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1145/1015706.1015810
https://doi.org/10.1145/1015706.1015810
http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1607.03597
https://doi.org/10.1145/1141911.1141962
https://doi.org/10.1145/1141911.1141962
http://arxiv.org/abs/cs.GR/1704.04456
https://doi.org/10.1145/3145749.3145758
https://doi.org/10.1145/2601097.2601129
https://doi.org/10.1145/2601097.2601129
https://doi.org/10.1145/3072959.3073608
https://doi.org/10.1145/1531326.1531345
https://doi.org/10.1145/1531326.1531345
http://arxiv.org/abs/1406.5670
http://amazon.com/o/ASIN/1856176355/
http://amazon.com/o/ASIN/1856176355/

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Parameterization of 3D Shape and Field
	4.1 Shape Parameterization for the Regression Problem
	4.2 Construction of the PolyCube Grid

	5 Machine Learning
	5.1 Data for Regression
	5.2 Gaussian Process
	5.3 Hyperparameter Optimization

	6 Result
	7 Limitations and Future Work
	8 Conclusion
	References

