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Motivation

* Machine learning is booming
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http://theoatrr1_e‘al.com/blog/ https://www.engadget.com/2016/03/13/google-alphago-loses-
google_self_driving_car to-human-in-one-match/
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Motivation

* Machine learning for 3D shape
— Understanding a class of shapes

In my understanding, shapes of cars look Iike?
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Motivation

* Machine learning for 3D shapes
— Finding low dimensional manifold in space
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Synthesizing New Shapes
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Preview of the Result: Slider bar
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Preview of the Result
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Interactive Exploration
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Parameterization problem

* Shape need to be represented by fixed
dimensional vector/tensor
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Parameterization problem

* Triangle mesh / NURBS are not suitable for ML
— Topology / #points are not constant
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Related Work: Voxel model

Difficult to synthesize detailed 3D shape

— Expensive memory cost, noise...
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Related Work: Multi-view model

Difficult to synthesize 3D data

[Su et al., 2017] [Tulsiani et al., 2017]
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Related Work: Point-based model

 Difficult to synthesize detailed 3D shape
— Hard to define surface
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Our Approach: Mesh Representation

 Quad mesh with constant topology
* Deforming a template mesh into input shape
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Our Approach: 3D Shape as Height Field

e Storing XYZ coordinates is redundant
* Height field from a cube in its normal

height
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Naive Projection Leads to Distortion

* Distortion means biased sampling density
* Not robust to the occlusion

Never to be sampled

occlusion

Never to be sampled




Hierarchical Projection

* We repeat subdivision and projection

e Key observation: concave shape is locally convex
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Hierarchical Projection in 3D
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Challenge

* Projecting points into polygon soup

*Inverted triangle

°|Intersections

*Gaps and holes
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*Internal structures




Depth Field Techniques

* Depth field can be efficiently computed with GPU

 More orthogonal projection is more trusted
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Parameterization




Over 1,200 Car Shapes from ShapeNet

[chang et al. 2015]

Manual annotation (5min) Parameterization(0.3sec)
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[Data is available on my web page: http://nobuyuki-umetani.com/ }




Autoencoder Network

* |Input and output of network is as same as possible

Minimize difference
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Autoencoder Network

* We could train the network preserving shapes
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Autoencoder Network

* Nonlinear dimensional reduction

encoder decoder

bottle neck
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Autoencoder Network

We use Sigmoid function for activation

 Decoder takes value between [0,1]
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Autoencoder Network
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Interactive Exploration

* Pulling operation to guide the synthesis
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Interactive Exploration

* Our parameterization is close form
— Easily differentiable for grad-based optimization

gradient
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Live Demo!



Limitation
* Only handles one-class of shape
— Difficult to handle different topologies

* Only handles nearly convex shapes

— Starting from a template mesh other
than cube

— combinations of several meshes




Future work

Y
* Advanced generation framework -
E GAN

— GAN’ VAE VA VAE+GAN

https://www.slideshare.net/vsevolodrodionov/
itsubbotnik-rodionov-talk-neural-networks-in-js-js-
itsubbotnik-2016

* Filter operations on the subdivision
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http://library.wolfram.com/infocenter/Demos/4532/

— Convolution operation
— Gaussian Pyramid / Laplacian Pyramid
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