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Free-form Wind-musical Instruments

Simulation & optimization to guide the instrument design
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Interactive Design Interface
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Interactive Hole-size Optimization

® Printone Designer
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Why Musical Instruments?

e |tisfun to play with sounds!! * There are many practical applications

speaker
housing

magnetron antenna wave guide



Related Work: Sound Simulation

Computing acoustic transfer for solid vibration

[O'Brien et al. 2002] [James et al. 2006] [Bonneel et al. 2008] [Dobashl et al. 2003]



Related Works: Contact Sound Design

Our goal is interactive design of wind-instrument

[Umetani et al. 2010] [Bharaj et al. 2015] [Musialski et al. 2016]




Related Works: Acoustic Sound Design

Our goal is 3D functional interactive design

[Allen et al. 2015] [lietal. 2016] our work
Interactivity Interactive Offline optimization Interactive
Simulation DoF 2D 3D: Concatenations of | 3D: free-form

parameterized voxel




Anatomy of Wind-Musical Instruments

Mouth piece

Resonator




Output Becomes Large at Resonance Freq.
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Input from mouth piece Output from the resonator
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Lowest Resonance Frequency Determines the Tone

| Fundamental resonance I

Overtones resonance frequency I
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Design of Free-form Resonator is Difficult

free-form shape

cavity-neck shape tube-like shape
Helmholtz resonator air-column resonator
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volume : V

Y

0D mass-spring model 1D distributed mass-spring
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* Geometric - Path Tracing |~ ™ QBWT
| ) ——
— ®inaccurate for resonance —Funk ; \

houser et. al 2002]

Methods to Compute Acoustics for 3D Shapes
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* Time Domain - FTDT,FEM

— ®inefficient for stationary response
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* Frequency Domain - FEIVI

- ©efficient for stationary response
— ©accurate

[James et. al 2006]



What is the Acoustic Resonance?




How Boundary Element Simulation Works
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How Boundary Element Simulation Works
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How Boundary Element Simulation Works
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Solving Helmholtz Equation with BEM

Helmholtz equation Total reflection boundary condition
(V2 + k)u(z) = 6(x) Ou(x)/dx = 0
» Solution is a combination » Dipole distribution

of kernels on the surface

u(r) = e kT[4




Solving Helmholtz Equation with BEM

We assemble matrix to capture interplay of reflecting pressure
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How Boundary Element Simulation Works

Eigenvalue of
system matrix

Frequency dependency
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Small min. Eigenvalue gives a Large Amplification

[ Our goal is to find a frequency W that makes Apyin (A) nearly zero]

@ i 1

Amplify ratio = <: /Ch M (A (@)




Eigen Analysis in Resonance Simulation

Simple harmonic oscillation problem

M

decomposable

Alw) =K[—w

L Solution with General
A(A) =0 Eigenvalue Problem

2

M

Acoustic resonance simulation
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» No decomposition
available

)\(A) =0 » No easy solution!



Traditional Frequency Sweep Method is Very Slow

Find smallest min. eigenvalue by computing matrices and
their eigenvalue for many sampled frequencies

Smallest minimum eigenvalue I

Y
Sample frequencies

frequency W



We Propose “Sparse Matrix Sampling”

We incrementally solve from sparsely sampled frequency

Smallest minimum eigenvalue I
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Computing Resonance Incrementally

Newton-Raphson Our scheme

flz) =0 Amin [A(w))]

— )\ma,x [%A_l]

We use the power method to find
the maximum eigenvalue




AutoTune: Automatic Hole-size Optimization

Analytically computing the sensitivity of the tone with
respect to the hole size

sensitivity
/ \ » lterative minimization of
difference between simulated

w and goal frequencies

\ » 15t order real-time estimation
\ e’ [Umetani et al 2011]




Live Demol



“Puff the Magic Dragon”with the Stanford Dragon
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Beethoven Symphony #9

s Symphony No.9 GCDEFG



Ocarina with Genus 1 topology




Flute

Instrument No.1




Big Ocarina




Saxophone




Chromatic Tuner Test




Accuracy: Instrument can Produce Right Tones

The target tone and the & higher bound of sound
Only 4 cases in 104 target tones are out of tune

1400Hz 600Hz 1200Hz
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Passive Resonance Measurement: (<10Hz error)

Simulated
Resonance
frequencies

loud speaker

microphone

Hz



Key Contributions

 Eigenvalue modeling of acoustic resonance V
f

* Fast small minimum eigenvalue search




Limitation: Simulating Timbre (Sound Quality)

Simulating overtones mouthpiece modeling turbulence simulation
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[N Giordano 2013]
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