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A Boundary Formulation of Acoustics

To make the paper self-contained, we briefly explain the boundary formulation
of the Helmholtz equation. We refer readers to the book [2] for more details of
the BEM implementation. The Helmholtz equation (1) has a kernel

G(x,y) =
exp(+ikr)

4πr
, where r = ||x− y||, (A.1)

which is the fundamental solution to the Dirac delta function δ(x − y). Using
this kernel function and the Neumann boundary condition, the second Stoke’s
theorem leads to the equation which the sound pressure on the surface p(x)
needs to satisfy

Ω(x)

4π
p(x) +

∫
S

∂G(x,y)

∂n(y)
p(y)ds(y) = G(x,xsrc), x ∈ S, (A.2)

where the ∂G(x,y)/∂n(y) derivative the kernel with respect to change of y ∈ S
in the normal direction of the surface is

∂G(x,y)

∂n(y)
=

exp(+ikr)

4πr2
(1− ikr) (x− y) · n

||x− y||
. (A.3)

The Ω(x) is a solid angle which takes 2π on a smooth surface, and is computed
for triangle mesh using a formula presented in [3]. In our implementation,
the sound pressure is stored at the vertices of a triangle mesh and linearly in-
terpolated over the triangle faces. We discretize equation (A.2) using a typical
collocation method, which formulates a linear system (3) by satisfying the equa-
tion at every vertex. We use a fifth-order Gaussian quadrature to compute
this surface integration.

Once the reflection pressure at the vertices p in (3) is solved, the pressure
value at the observation point xobs inside medium Ω is computed with the
surface integration

p(xobs) = −
∫
S

∂G(xobs,y)

∂n(y)
p(y)ds(y) + G(xobs,xsrc), xobs ∈ Ω. (A.4)
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Our implementation is specifically categorized as the conventional boundary
integration method (CBIM), in contrast to a more sophisticated model such
as the Burton-Miller method [1]. The CBIM often suffers from errors in the
frequency where the complementary region of the media Ω̄ = {x ∈ R3|x /∈ Ω}
has a fictitious resonance mode. In our simulation the complementary region Ω̄
is the solid region of the musical instrument. Since our complementary region
Ω̄ is small compared to the cavity, the fictitious resonance mode is much higher
compared to the fundamental cavity resonance frequency, and thus CBIM is
adequate.

The off-diagonal (i, j)-entry of the resulting coefficient matrix Aij is approx-
imately written as:

Aij '

[
rij · ni
4πr3

ij

∆j

]
exp(+ikrij) (1− ikrij)︸ ︷︷ ︸

g(γ)

, (A.5)

where rij is a vector between i- and j-vertices, rij = ||rij ||, the ni is the unit
normal vector, Ωi is the solid angle at the i-vertex, and ∆j is one third of
the area of triangles around j-vertex. Notice the nonlinearity of the coefficient
matrix with respect to wavenumber k (see Sec. 5.1). Furthermore, the nonlinear
dependent part g(γ) is a function of γ = krij and if it is small, the linear
approximation over the wavenumber is reasonable (see Sec. 6.2). Finally, the
entry is invariant under the scaling geometry with s and scaling the wave number
with 1/s i.e., rij → srij and k → k/s (see Sec. 8).

B The Minimum Eigenvalue Bounds the Mag-
nitude of System’s Output from Below

Here, we show that if the minimum eigenvalue of the system’s coefficient matrix
A ∈ CN×N is very small, the magnitude of the output p = A−1f becomes very
large for almost arbitrary inputs f ∈ CN . We denote the eigenpair of smallest
and second-smallest magnitude eigenvalues of A as (λ0,p0) and (λ1,p1). The
following relationships holds according to matrix norm theory:

1

|λ0|
=
|A−1p0|
|p0|

,
1

|λ1|
≥ max

p∈CN

〈p,p0〉=0

|A−1p|
|p|

. (B.1)

Note that we assume A is non-Hermitian and invertible, which is typically
true for exterior acoustic problems. For arbitrary input f , the vector f‖ =
〈f ,p0〉p0/|p0|2 is a projection of f in the direction of p0 and the vector f⊥ = f−f‖
is the remaining component. The output magnitude is bounded from below as

|p| = |A−1f | =
∣∣A−1(f‖ + f⊥)

∣∣ (B.2)

≥
∣∣A−1f‖

∣∣− ∣∣A−1f⊥
∣∣ (B.3)

≥
|f‖|
|λ0|
− |f⊥|
|λ1|

. (B.4)

This relationship shows that the magnitude of output |p| will become larger than
the input as long as the magnitude of λ0 is much smaller than the magnitude
of λ1, except for the very rare case where f is perpendicular to p0.
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C Sensitivity Derivation

To derive the sensitivity of the eigenvalue and resonance wavenumber (Equa-
tion (12)), we compute one iteration of the inverse power iteration in Algo-
rithm 1 which is w = DA−1v. Let the matrix D and A be perturbed by a
geometric change as D + ε∆D and A + ε∆A, where ε is a small number. Then
w changes as

w + ε∆w = (D + ε∆D)(A + ε∆A)−1v, (C.1)

= (D + ε∆D){A(I + εA−1∆A)}−1v, (C.2)

= (D + ε∆D)(I + εA−1∆A)−1A−1v, (C.3)

' (D + ε∆D)(I− εA−1∆A)x, (C.4)

= DA−1v︸ ︷︷ ︸
=w

+ε
(
∆Dx−DA−1∆Ax

)︸ ︷︷ ︸
=∆w

. (C.5)

We use the Neuman expansion for the transformation from (C.3) to (C.4). We
ignore the term ∆Dx since we observed that its contribution is very small.
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