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Figure 1: (a) The user can design the shape of wind musical instruments while guided by sound simulation feedback. (b) The acoustic
resonance is simulated by solving the wave equation in the frequency domain. (c) The hollow musical instrument has internal structure
and finger holes (d) which produce target tones at specific finger configurations. (e) The user can design unconventional functional wind
instruments.

Abstract

This paper presents an interactive design interface for three-
dimensional free-form musical wind instruments. The sound of a
wind instrument is governed by the acoustic resonance as a result
of complicated interactions of sound waves and internal geometries
of the instrument. Thus, creating an original free-form wind instru-
ment by manual methods is a challenging problem. Our interface
provides interactive sound simulation feedback as the user edits,
allowing exploration of original wind instrument designs. Sound
simulation of a 3D wind musical instrument is known to be com-
putationally expensive. To overcome this problem, we first model
the wind instruments as a passive resonator, where we ignore cou-
pled oscillation excitation from the mouthpiece. Then we present a
novel efficient method to estimate the resonance frequency based on
the boundary element method by formulating the resonance prob-
lem as a minimum eigenvalue problem. Furthermore, we can effi-
ciently compute an approximate resonance frequency using a new
technique based on a generalized eigenvalue problem. The designs
can be fabricated using a 3D printer, thus we call the results “print-
wind instruments” in association with woodwind instruments. We
demonstrate our approach with examples of unconventional shapes
performing familiar songs.
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1 Introduction

Wind instruments have been prominent in the musical history of
all cultures since prehistoric times. They exhibit great diversity in
structure and sound and many variations have been explored, such
as flutes, horns, saxophones, and recorders. However, most wind
instruments are restricted to cylindrical tube-like shapes, for which
the resonance properties are well understood. Free-form design is
challenging due to the complex relationship between geometry and
resonance.

Wind instruments are characterized by an enclosed volume of os-
cillating air that radiates sound to the listener. Various tones are
produced through acoustic resonance, where the specific frequen-
cies of oscillation are magnified through interaction between sound
wave propagation and the instrument’s geometry. The player ex-
cites the oscillation by blowing air into the instrument and controls
the resonance by changing the shape of the resonator (e.g., closing
and opening finger holes).

Computational acoustics simulates how sound waves travel through
air while interacting with solid objects. Resonance of arbitrarily-
shaped objects can be computed through numerical simulation,
however, this comes with high computational expense and is typ-
ically delegated to offline processing. Recently, Allen and Raghu-
vanshi [2015] presented a real-time interface that simulates res-
onance of two-dimensional instruments while the user edits the
shape. In this paper we introduce a method to interactively sim-
ulate fully three-dimensional wind instruments which can then be
fabricated and played in person.

We present Printone, a tool to design original functional three di-
mensional wind instruments. Printone aids the user’s instrument
creation via interactive simulation of the resonance frequency. The
inputs are a three-dimensional shape that is to be converted into a
musical instrument and a set of target frequencies that should be
produced through different open/close patterns of the finger holes.
To find a design which produces the target frequencies, the user in-
teractively scales the input shape and edits the placement and size
of the finger holes. During this process they are guided by interac-
tive feedback from the simulation. We compute the resonance nu-
merically from the free-form geometric shape, hence the user can
explore unconventional musical instruments beyond simple cylin-
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drical shapes.

The foremost technical challenge in interactive instrument design is
efficient acoustic resonance simulation. Rather than solving for the
entire frequency spectrum, we focus on the dominant tone, which is
the lowest passive resonance frequency of the instrument’s internal
cavity. Additionally, we neglect the non-linear coupling effect from
oscillation excitation of the mouthpiece.

Frequency-domain simulation provides an efficient way to simu-
late three-dimensional acoustics by solving only on the boundary.
However, this approach solves the acoustics for a predefined fre-
quency, and thus gives no direct clue about where the resonance
frequency occurs. To overcome this problem, we first characterize
the resonance as a nonlinear eigenvalue problem. Then, we present
a technique to efficiently estimate the resonance frequency from
a set of sparsely-sampled linear systems in the frequency domain
by solving a generalized eigenvalue problem. We further acceler-
ate simulation during geometry editing by introducing sensitivity-
based first-order estimation and a local matrix update approach.
Our interactive tool also provides an automatic hole size adjustment
function, which makes it easy to satisfy multiple frequency targets
with different finger configurations.

Our simulation provides interactive response times during design
by limiting prediction to a discrete set of resonance frequencies,
avoiding the expense of a full spectrum computation. This means
we do not simulate the timbre of the instrument. However we show
that predicting resonance frequencies is sufficient for hobby-grade
fundamental frequency dominant wind musical instruments, where
some degree of sound quality can be sacrificed to achieve novel de-
signs. The resulting instruments can be fabricated with commonly
available Fused Deposition Modeling (FDM) 3D printers. We vali-
date our model through frequency comparisons between simulated
and fabricated instruments, and we demonstrate a wide variety of
novel instrument geometries. In summary our contributions in-
clude:

• A formulation of resonance as a nonlinear minimum eigen-
value of the system’s coefficient matrix.

• Efficient resonance frequency estimation based on frequency-
domain acoustic simulation at sparsely sampled frequencies.

• Sensitivity-based acceleration of resonance frequency predic-
tion and finger hole size optimization.

• An interactive user interface for designing functional wind in-
struments.

2 Related Work

Physics of musical instruments. The physics of conventional
acoustic instruments has been extensively studied. Please refer to
Fletcher and Rossing [2010] for a comprehensive overview. For
analysis specific to wind instruments, acoustic impedance mod-
els are commonly used to represent the frequency response of
tube-like resonators [Nederveen 1998]. Based on the impedance
model, real-time virtual instrument simulation systems have been
explored [Cook 1991; Hirschman 1991]. However, impedance
models typically simplify the pressure wave to be one-dimensional,
and thus are limited to serial assembly of tube-like primitives such
as cylinders or cones, where the analytic solution is known. In addi-
tion to the properties of resonators, the nonlinear properties of vari-
ous mouthpieces have been studied [Hirschberg et al. 1996]. To in-
vestigate the relationship between more complex instrument shapes
and the resulting sound, expensive simulation is employed involv-
ing the solution of the compressive Navier-Stokes equation (e.g.,
[Giordano 2014; Yokoyama et al. 2015]), the Helmholtz equation

(e.g., [Lefebvre and Scavone 2012]), or hybrid formulations (e.g.,
[Da Silva 2008]). However, the computational cost of these meth-
ods limits their use in interactive design tools.

Computational free-form instrument design. A few recent
works have tackled the problem of free-form musical instrument
design. Umetani et al. [2010] presented interactive design of free-
form metallophones by integrating real-time fundamental tone sim-
ulation into a geometric design system. This work was extended by
Bharaj et al. [2015] to incorporate overtone simulation and geome-
try optimization for 2D and 3D shapes. These methods support the
design of objects with specific contact sounds, while our goal is to
design objects with a desired acoustic resonance frequency. Out-
side the computer graphics community, shape re-design of musical
instruments has been applied to bell optimization [Schoofs et al.
1987] and customization of 3D-printable saxophone mouthpieces
based on computational acoustic imaging [Lorenzoni et al. 2013].

Our work is greatly inspired by the work of Allen et al. [2015]
which simulates sound for free-form wind musical instruments in
2D. They compute sound output by solving the wave equation in
the time domain over a two-dimensional grid. However due to the
2D scope, the resulting designs are not physically realizable for fab-
rication. Extending to 3D wave propagation is feasible, but signifi-
cantly more expensive than 2D simulation at the same resolution.

Recently Li et al. [2016] introduced the Acoustic Voxel method, in
which a sequence of simple, parametric sound-filter modules are
assembled to produce specific frequency-dependent impedance be-
tween input and output openings. The frequency response of the
modules is pre-computed for the allowable space of parametric vari-
ation, making the offline stochastic sound optimization tractable.
Although this method can be used to design basic instruments, it is
not easily extended to the case of non-parametric free-form shapes
as shown in our work, where the precomputation would need to be
recomputed after every cavity shape change.

Sound synthesis in graphics. Research in computer graphics
has also explored simulation of contact sounds to enhance the fi-
delity of virtual animation [van den Doel et al. 2001; O’Brien et al.
2001; Bonneel et al. 2008; Ren et al. 2013]. Modeling sound
wave propagation in air is essential for realistic acoustic synthe-
sis. Efficient representations of sound propagation have been pro-
posed to model diffraction and reverberation in complex geome-
tries [Funkhouser et al. 1999; Tsingos et al. 2001; Raghuvanshi
et al. 2010]. Acoustic transfer accurately models how the object’s
steady-state vibration travels through air in the frequency domain,
and thus is frequently applied in contact sound simulation [James
et al. 2006; Zheng and James 2010; Zheng and James 2011]. These
contact sound simulations generally take a two-step approach: vi-
bration modes of the solid object are first computed, and then acous-
tic transfer is computed for each vibration mode discretely. In con-
trast, we tackle resonance simulation, where the vibration frequen-
cies are not given from solid modal vibration. To identify the reso-
nance frequencies it is necessary to scan the wave equation over a
range of frequencies.

Asymptotic expansion of acoustic transfers was introduced by Li
et al. [2015] to cover a range of frequencies, allowing interactive
synthesis of contact sounds for various material parameters. How-
ever, precomputation costs are prohibitively high and specific to a
particular shape, preventing applicability to interactive shape de-
sign. Further, sharp peaks in acoustic radiation at the resonance
frequency are difficult to resolve by polynomial expansion. Rather
than expanding the acoustic transfer, we directly compute the reso-
nance frequency by exploring the spectral properties of the system’s
coefficient matrix.



Eigenformulation for acoustic resonance. To directly com-
pute a resonance frequency, we model the resonance frequency as
the frequency that gives the smallest minimum eigenvalue of the
systems coefficient matrix. This approach is related to the Determi-
nant Search Method (DSM), which models the resonant frequency
as the frequency that give the zero minimum eigenvalue (i.e., the
matrix is singular), and then finds a root of the determinant of the
coefficient matrix using the Newton-Raphson iteration. Various ap-
proaches have been proposed to efficiently detect singularities of
the coefficient matrix for acoustic problems inside fully enclosed
cavities [Ali and Rajakumar 2004]. However, for our musical in-
strument design problem, we cannot employ DSM because the cav-
ity is not fully enclosed and the sound is damped as it travels to
infinity, thus the coefficient matrix is typically not singular.

Physics-based cavity optimization. We provide a design inter-
face for creating functional wind instruments, which relies on the
shape of internal cavities. Prior work has investigated optimiz-
ing cavity shapes to satisfy functional requirements, such as bal-
ance [Prévost et al. 2013], spin-ability [Bächer et al. 2014], buoy-
ancy [Musialski et al. 2015; Wang and Whiting 2016] and strength-
to-weight optimization [Lu et al. 2014]. Cavity shape optimization
can also be performed efficiently using reduced-parameter shape
spaces [Musialski et al. 2015]. We leave automatic optimization of
internal cavity shape for future work, and instead focus on optimiz-
ing the finger holes that connect the cavity to the exterior.

3 Mechanics of Wind Instruments

In this section, we briefly describe the mechanics of wind musical
instruments and breakdown the components simulated by our de-
sign tool. We use the word tone to refer to the sound produced by
a single frequency, purely sinusoidal waveform. Natural sound is
made up of many tones: the lowest frequency corresponds to the
fundamental tone. Higher frequencies above the fundamental are
called overtones. While overtones determine the timbre – the qual-
ity or color of a musical note – the pitch of the sound is determined
by the fundamental tone.

Wind musical instruments typically consist of two components: a
mouthpiece and a resonator cavity. The mouthpiece excites vibra-
tions of air in a range of frequencies to initiate and maintain the
resonance. The resonator is an enclosed cavity inside the instru-
ment which amplifies oscillation of specific frequencies. Only the
frequency corresponding to the resonance frequency of the cavity
survives and will be audible.
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Figure 2: Mechanism of a fipple-driven wind instrument. (a) Blown
air reaches the fipple, creating an oscillation with a range of fre-
quencies. The resonator cavity amplifies sounds at specific fre-
quency tones. (b) In a typical ocarina spectrum, the fundamental
tone is dominant over overtones.

Fig. 2 illustrates the basic configuration of our musical instruments.
Our mouthpiece is the fipple, which is commonly used for recorders
or ocarinas. The fipple excites oscillation when a narrow airstream
hits a sharp edge called the bladed edge, thus creating turbulence of

many frequencies downstream. Other common types of mouthpiece
exist, such as reeds, which are mechanically vibrating thin pieces
of material (e.g. used by saxophones and clarinets). Our focus is
primarily on fipples, since the vibration properties of reeds are very
sensitive to material stiffness and thus are difficult to fabricate with
commonly available FDM printers.
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Figure 3: The Helmholtz resonator and the air column resonator
are the known resonator models for simple primitive geometries.
The resonance frequencies f for these models are approximated
with simple equations. When the geometry is more complex (e.g,
free-form and multiple finger holes) we need to solve the wave equa-
tion to predict the resonance frequency.

Resonance frequencies are determined by the shape of the res-
onator. There are two existing models of acoustic resonance for
simple geometries. One is the Helmholtz resonator which applies
to containers with near-spherical cavities, e.g. an empty bottle (see
Figure 3-left). The air in the neck behaves as a mass in a mass-
spring simulation, and the chamber as a spring. The frequency can
be approximated simply from the volume of the resonator chamber
and the neck dimensions. This model breaks down for more general
shapes where the neck and the resonator chamber cannot be clearly
separated. The other known resonance model is the air column res-
onator, in which the interference of the incident and reflected wave
inside a cylinder constructs a standing wave (see Figure 3-middle).
This can be modeled as a one-dimensional distributed mass-spring
system, the frequency of which can be computed by the length of
the cylindrical tube. For more complex geometry these models no
longer apply, and thus computational simulation of acoustic wave
propagation is required, which is the main focus of our paper.

While the resonator affects the resonance frequencies, the mouth-
piece affects the amplitude of these frequencies. Typically the os-
cillation of the mouthpiece and the resonance are coupled. In other
words, the oscillation introduced by the fipple is affected by the air
movement driven by the resonance. Detailed analysis of the oscilla-
tion induced by the fipple requires expensive turbulence analysis us-
ing computational fluid dynamics [Giordano 2014]. In order to pri-
oritize interactive functional instrument design, we ignore this cou-
pling and only simulate the dominant frequency of the sound. Gen-
erally, the dominant frequency is one of the resonance frequencies
and can be controlled by the player by changing the embouchure
or the speed of the blowing. In fipple-driven wind instruments, the
fundamental resonance frequency is typically dominant at moder-
ate blowing speeds [Fletcher and Rossing 2010]. Thus, we found
that predicting fundamental resonance frequencies is sufficient for
designing hobby-grade musical instruments that can play simple
melodies composed of a set of dominant tones. Incorporating tim-
bre by simulating the coupling between the mouthpiece and res-
onator [Allen and Raghuvanshi 2015] would result in higher-quality
sound, but is also significantly more computationally intensive for
3D geometries, and we leave it to future work to discover ways to
do this at real-time rates.



4 User Interface

This section describes our wind instrument design tool. Fig. 4
shows a screen shot of our system. The 3D user interface con-
sists of geometric editing tools to place finger holes and the fipple.
Resonance simulation results are provided as feedback, allowing
the user to adjust geometry and finger hole positions that generate
desired resonance frequencies.

Our tool offers an interactive interface to convert an input 3D shape
into a functional wind instrument. Interactivity is very important
in free-form musical instrument design to satisfy multiple require-
ments. First, the resonance frequency should be as close to the
target frequencies as possible. This is straightforward when each
frequency corresponds to a configuration where only one hole is
open – the user can adjust the one hole independently of the rest
of the design. However, the design process becomes more complex
when the user wishes to achieve a high number of notes with few
holes, therefore needing to rely combinatorics of different hole con-
figurations (e.g. 3 holes have 8 open/close combinations). Second,
the original 3D shape needs to be preserved as much as possible. A
free-form musical instruments should balance the functionality as
a wind-instrument with the aesthetics of the original input shape.
The user tries to minimize the number of finger holes and chooses
their locations according to their design intent (e.g., do not place
finger holes on a face). Finally, certain ergonomics need to be con-
sidered, e.g., the musical instrument needs to be graspable at any
finger configuration. With an interactive feedback the user can ex-
plore solutions to these requirements.

finger configuration
simulated frequency
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  windowAutoTune

      button

Figure 4: Screen-shot of our wind instrument design tool. The user
can manipulate the size and location of finger holes and can open
and close these holes while listening to the simulated sound. The
fundamental frequency is visualized together with finger configura-
tions and target notes.

Geometric editing. Our tool imports existing polygonal meshes,
which specifies the exterior shape of the instrument. The tool auto-
matically hollows out the shape to generate an internal cavity. Then,
the user positions the fipple and finger holes by clicking on the ob-
ject’s surface. The user can also uniformly scale the entire instru-
ment and adjust the orientation of the fipple. The size of the finger
holes can be continuously adjusted to manipulate the frequency of
the resonance. The user can also specify whether the finger holes
are open or closed to test the sounds produced by their instrument
design.

Simulation feedback. In the bottom of the window (Fig. 4), the
tool shows finger hole open/close patterns along with their simu-
lated resonance frequencies. At the same time, the speaker plays
the sound with the simulated resonance frequency in the current fin-
ger configuration. During continuous adjustment of the size of an
individual hole, the tool approximates the change of the resonance

frequencies based on sensitivity analysis in real-time (>30FPS) and
updates the audio and visual feedback. During idle moments, the
system computes more accurate frequency estimations for each fin-
ger configuration. Each update takes only a few seconds, and thus
it does not interfere with the user’s interactive editing session.

Interactive finger hole size optimization. Our tool supports an
optional automatic optimization of the finger hole sizing to simplify
the design process. This is a helpful capability because achieving
multiple resonance frequencies requires adjusting multiple finger
holes in a coordinated way. To use the automatic optimization, the
user first specifies finger configurations and their frequency targets.
Then the user presses the “AutoTune” button, and the tool automati-
cally resizes each finger hole such that it best achieves the frequency
targets. This simple addition allows the user to save significant time
and produce more accurate instruments. The optimization proce-
dure is described in Sec. 7.

Design procedure. We assume the user has some prior knowl-
edge about the design of wind instruments, namely that (i) larger
cavities lower the resonance frequency, and (ii) larger and/or more
holes increase the resonance frequency. When a finger hole is
closed, the size and the position of that hole does not influence
the resonance frequency. In other words, closing holes reduces
the number of control parameters that affect resonance frequency.
Hence, after the mouthpiece is positioned, the user first scales the
instrument such that the lowest target note is produced when all
holes are closed. Next, the user opens one hole and adjusts its
size and location to achieve the second lowest frequency. The user
then continues opening holes and adjusting their size and location
to achieve sequentially-higher target frequencies, until all notes can
be produced.

With this simple procedure, N holes are sufficient to produce N+1
target tones, since each newly-opened hole can be individually ad-
justed to produce the next target tone. However, since there are
actually 2N finger configurations for N holes, fewer holes can also
be used. In practice, it is easy to achieve two or three higher tar-
get tones with each new hole. This involves some trial-and-error
hole resizing and positioning, but interactive feedback makes the
process straightforward. The optimization function is mainly used
for fine-tuning instead of automatic discovery of new hole designs,
since the user still needs to place the holes and specify the cor-
respondence between target frequencies and finger configurations.
The user is recommended to place the mouthpiece at the beginning
of the design session, since the relocation of the mouthpiece alters
all the achieved resonance frequencies. For the shapes in Fig.17,
the resonance frequencies changes up to 20 Hz as a result of the
mouthpiece relocation. The resonance frequencies are usually in-
sensitive to mouthpiece location for the round cavity shapes. This
is because the fipple is essentially a hole which is always open (see
Helmholtz resonator model in Fig. 3). Our AutoTune also accom-
modates posterior relocation of the mouthpiece by adjusting hole
sizes.

Using the approach described above, a novel wind instrument can
be designed in about half an hour. This includes time spent de-
signing aesthetics and ergonomics. For example, the mouthpiece
must be unobstructed, the finger configurations should allow reli-
able grasping, and the mouthpiece and finger holes should not dis-
rupt salient features. We leave it to future work to automatically
guide the user towards “good” instrument ergonomics, for example
using the graspability framework of [ElKoura and Singh 2003].



5 Acoustic Resonance

Acoustic resonance is a phenomenon where the output of an acous-
tic system becomes very large compared to the magnitude of input
at specific input frequencies. Our goal is finding such resonance
frequencies for a cavity shape, where the enclosed internal hull is
connected to the exterior with small holes. Typical methods usu-
ally involve specifying locations of a sound-emitting point and a
sound-observing point, and then find the ratio between input and
output [Kirkup 1998]. Instead, we formulate resonance as a mini-
mum eigenvalue problem of the system’s coefficient matrix, which
is solely defined by the object’s geometry and independent of any
source and observation points. This formulation leads to the fast
approximate resonance computation presented in Section 6.

5.1 Background on Acoustic Simulation

This section briefly explains the background of the frequency do-
main acoustic simulation based on the notation used in [James et al.
2006]. We consider a problem where sound waves, which are emit-
ted from external vibration sources, are reflected from an object’s
surface S. Resonance is a static phenomenon, i.e., the magnitude
of a sound wave is maintained via excitation from an external vi-
bration source. In this case it is more convenient to formulate the
problem in the frequency-domain, where all the variables are con-
verted to static via temporal Fourier transform. The pressure field
is represented as a set of harmonically vibrating fields p(x)e+iωt,
where ω is the angular frequency of the vibration. The wavenumber
is given as k = ω/c, where c is the speed of sound in the medium
(approximately 340 m/s in air). The spatial distribution of pressure
is denoted p(x) ∈ C, and satisfies the Helmholtz equation

(−∇2 − k2)p(x) = fext(x), x ∈ Ω, (1)

where fext(x) is the source term that represents a forced vibra-
tion from an excitation mechanism located inside the medium Ω.
For example, a point source at xsrc with unit magnitude results in
fext(x) = δ(xsrc − x), where δ is the Dirac delta function. We
assume the object’s surface is very hard and reflects the sound com-
pletely, i.e., the normal velocities of the air particles are zero at the
surface. This can be written as a Neumann boundary condition

∂p

∂n
= 0, on S. (2)

The Helmholtz equation can be solved with many different dis-
cretization methods. We use the Boundary Element Method
(BEM), which compactly represents the three-dimensional pressure
distribution in Ω with the pressure values on the object’s surface
mesh S. Since the BEM-based formulation naturally satisfies the
Sommerfeld radiation condition, it can model the radiation from the
surface to infinitely far away. The BEM discretizes the Helmholtz
equation into a matrix formulation

A(k)p = fext, (3)

where fext ∈ CN is a vector storing incident pressure at vertices
and p ∈ CN is the resulting reflection pressure value at the vertices
of the object. The coefficient matrix A(k) ∈ CN×N is a dense
non-Hermitian matrix that varies with respect to the wavenumber k.
Details of the matrix A are given in (A.5) in the supplemental ma-
terial. Note that A changes nonlinearly with respect to k, since the
first derivative of the coefficient matrix is k-dependent. Once the
reflection pressure p is computed by solving (3), the pressure value
at the observation point inside the medium xobs ∈ Ω is given by
integrating pressure over the surface. See (A.4) in the supplemental
material.

5.2 Resonance as a Small Minimum Eigenvalue

Typically, the resonance is defined as the frequency where pressure
at the observation point p(xobs) has a local maximum for a spe-
cific source point xsrc. Such local maximums are typically detected
with a frequency sweep, i.e., solving for the pressure at p(xobs) at
many different wavenumbers. Frequency sweeps are very compu-
tationally intensive, we thus first formulate resonance in a different
way such that we do not need to compute the pressure at a specific
observation point.

The resonance frequency does not depend on the observation posi-
tion, e.g., the fundamental frequency of a flute does not depend on a
listener’s position. Furthermore, the resonance frequency typically
does not depend on the position of excitation. Hence, instead of
comparing the values at these points, we compare the overall mag-
nitude of incident excitation and reflection on the surface. Specif-
ically, we define resonance as the frequency where the magnitude
of reflection pressure on surface |p| takes the maximum value com-
pared to the magnitude of the incident pressure |fext| = |A(k)p|,
i.e., the magnitude of the incident wave reaches a minimum relative
to the magnitude of the reflection pressure.

kresonance = arg min
k

(
min
p

|A(k)p|
|p|

)
, (4)

Note that the norm of the reflection pressure |p| corresponds to the
sum of acoustic energy that the vertices emit and the norm of the
incident pressure |fext| corresponds to the sum of acoustic energies
that the vertices receive. The squared norm of the vector is defined
as |p|2 = 〈p,p〉 = pT p̄, where p̄ is the conjugate of p.
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Figure 5: Sound is emitted and observed at the two points near a
tube with one end open. The magnitude of the observed reflection
sound has a significant relationship with the minimum eigenvalue
of the acoustic system.

Given a fixed wavenumber k in (4), the problem of finding the min-
imal reflection pressure p is equivalent to finding the magnitude of
the minimum eigenvalue of matrix A(k). If this minimum eigen-
value is small, the magnitude of reflection pressure becomes large
compared to the magnitude of incident pressure (see a more de-
tailed discussion in Appendix B). Figure 5 shows an air column vi-
bration example, where the strong relationship between minimum
eigenvalue and pressure wave magnitude is shown at several ob-
servation points. Since the matrix A(k) changes nonlinearly with
respect to k, finding k that minimizes the smallest eigenvalue of
A(k) by sampling many different wavenumbers is very time con-
suming. Section 6 describes our novel approximation to solve for
this wavenumber efficiently.

Relationship to the modal vibration. Our resonance defini-
tion (4) is a generalization of a modal vibration, where the coef-
ficient matrix can be decomposed into a positive-definite Hermi-
tian matrix K and a squared-frequency-scaled identity matrix as



A(k) = K − ω2I. Solving (4) for such problems is identical to
the solution of the eigenvalue problem: A(k)p = Kp− ω2p = 0
for non zero p. However, such a matrix decomposition is impossi-
ble for exterior acoustic simulations (the exterior acoustics means
the medium Ω is unbounded). In our BEM simulation, the sec-
ond derivative of the coefficient matrix with respect to the k is k-
dependent (see (A.5) in the supplemental material). Moreover, the
matrices for exterior acoustic problems are typically non-singular,
thus there is no non-trivial solution for A(k)p = 0.

5.3 Spectral Properties of the Coefficient Matrix

We defined the resonance frequency as that where the minimum
eigenvalue of the system’s coefficient matrix is small. Before ex-
plaining how to find such a frequency, we briefly explain why cavity
shapes produce resonance sound in terms of the spectral properties
of the coefficient matrix. Acoustic resonance is a unique phenom-
ena observed in cavities, i.e., convex shapes typically do not have
resonance modes. Since the cavity resonance depends on the shape
of the cavity, i.e., the exterior shape typically does not affect res-
onance, we only consider the properties of the coefficient matrix
related to the interior. Note that this is an informal observation,
rather than a mathematical proof, which we found to provide useful
insight into the connection between cavity shape and the spectral
properties of the matrix. A more precise discussion can be found in
mathematics literature [Brüning et al. 2009].

eigenvalues

totally enclosed almost enclosed

real almost real
0 for some k small for some kmin. eigenvalue

matrix Hermitian almost Hermitian

Figure 6: Spectral properties of the coefficient matrix for totally
enclosed cavity (left) and cavity with small holes (right). Since the
difference in the coefficient matrix is small, the spectral properties
of the cavity-with-holes inherits these of the totally enclosed cavity.

The coefficient matrix A(k) is a discretization of the operator
A(k) = L − k2I, where the L is the Laplace operator (−∇2)
and the I is the identity operator. The domain of the acoustic
medium Ω is a cavity where the internal hull and the outside region
are weakly connected with small finger holes. Assuming that the
holes are small relative to the overall cavity surface area, we expect
that the spectral properties of the matrix are numerically similar to
the properties for the matrix of a totally enclosed cavity.

In a fully enclosed region without holes, under the Neumann bound-
ary condition (2), the Laplace operator is non-negative and Hermi-
tian, which means it has real non-negative eigenvalues. When the
squared wavenumber k2 is identical to one of the eigenvalues of the
Laplace operator L, the operator A has a zero eigenvalue. The nu-
merical discretization of an operator inherits its spectral properties,
thus matrix A(k) is also expected to be Hermitian and have real
eigenvalues. Furthermore, at some specific wavenumbers it has a
zero eigenvalue.

An infinitesimal hole that connects the internal cavity and the exte-
rior region produces only a small change to the matrix A(k) (see
Figure 6). Since A(k) for an open boundary is a non-singular
matrix, such perturbation continuously changes the eigenvalues.

Hence, as long as the hole is small, we can still expect that A(k)
is numerically close to Hermitian (meaning that its eigenvalues are
numerically close to real-valued, i.e. the magnitude of the imag-
inary component is small relative to the real component). Hence,
for some specific resonance wavenumber, the smallest eigenvalue
of A(k) will still be much smaller than the second smallest eigen-
value. Figure 7 illustrates how a small hole in a cavity smoothly
changes the profile of smallest and second smallest eigenvalues.
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Figure 7: The minimum and the second-smallest eigenvalues of the
coefficient matrices for a cavity with a small hole. As the hole size
grows, the profile of the eigenvalues continuously shifts.

Origin of the Helmholtz resonance. The fully enclosed cavity
with the Neumann boundary condition (2) has a trivial zero eigen-
value at k = 0 (i.e., zero frequency) where the interior pressure is
constant. A small hole in the cavity perturbs this eigenmode, and
thus there is always a small eigenvalue with low frequency. This
low-frequency resonance corresponds to the Helmholtz resonance
because as the hole becomes smaller the Helmholtz resonance fre-
quency converges to zero [Mohring 1999].

6 Approximating Resonance

In the previous section, we defined the resonance frequency as the
frequency which produces the smallest minimum eigenvalue of the
coefficient matrix A(k). Computing the matrix A requires O(N2)
operations and is very expensive, thus we cannot compute A(k) for
many different wavenumbers if our system is to run at interactive
rates. In this section, we present a method to estimate resonance
from a few discretely sampled wavenumbers.

6.1 Generalized Eigenvalue Problem Approximation

We sample the wavenumber at km (m = 1, . . . ,M). At each
discretely sampled wavenumber km, we approximate the k-varying
coefficient matrix A(k) with a first-order Taylor expansion as

A(k) � Am + (k − km)Dm, (5)

where Am = A(km) and Dm = ∂A(k)/∂k is the derivative of
the coefficient matrix at km. The derivative of the operator A(k)
with respect to the wavenumber gives a scaled identity operator
∂A(k)/∂k = −2kI. Since Dm is essentially a discretization of
an identity operator, it is close to a real-valued diagonally-dominant
matrix (similar to the mass matrix in a solid mechanics simulation).

Finding the resonance wavenumber (4) using this first-order ap-
proximation (5) is closely related to the generalized non-Hermitian
eigenvalue problem:

A′(λ)v = 0, A′(λ) = Am − λDm, (6)

where λ ∈ C is the eigenvalue and v ∈ CN is an eigenvector.



Since A′ is just a shifted version of A: A(k) = A′(km − k),
if (km − k) is close to λ, the minimum eigenvalue of A(k) be-
comes small. In other words, when (k− km) is the real part of λ, a
vector p similar to v makes the |A(k)p|/|p| small. Since the first
order Taylor expansion (5) is valid only when the wavenumber is
close to the sampled km, we are interested in finding a resonance
wavenumber nearest to the sampled km. The eigenvalue of smallest
magnitude λ0 gives a resonance wavenumber as

kresonance = km − Re(λ0). (7)

imaginary

0
real

This is a good approximation because
the eigenvalue λ is close to a real
number for the cavity resonance. The
generalized eigenvalue problem (6) is
identical to the conventional eigen-
value problem for matrix AmD−1

m . As
we discussed in the previous section,
Am has nearly-real eigenvalues. Since
the Dm is close to a real-valued diagonally-dominant matrix, mul-
tiplying by its inverse does not alter the properties of Am.

Inverse power method. The eigenvalue with smallest magnitude
λ0 can be easily computed using the inverse power method [Dem-
mel et al. 2000]. More specifically, by repeatedly multiplying
the inverse of the matrix AmD−1

m with an arbitrary vector v as
v← DmA−1

m v, the Rayleigh quotient

θ =
〈DmA−1

m v,v〉
|v|2 (8)

converges to the inverse of the minimum eigenvalue. Convergence
is defined as |w − θv|/|v| < ε, we use ε = 10−5 in this paper.
Once the iteration converges, the inverse of the Rayleigh quotient
gives the minimum eigenvalue λ0 = θ̄/|θ|2.

6.2 Sparse Wavenumber Sampling

We uniformly sample the wavenumbers such that the range of these
frequencies covers the target frequencies. The computation of the
matrix derivative Dm is as expensive as the computation of the co-
efficient matrix Am. Hence, as shown in Fig.8-left, we approx-
imate the matrix derivative with a central differential of sampled
coefficient matrices

Dm =
Am+1 −Am−1

km+1 − km−1
. (9)

For the first and last sampled wavenumber k1 and kM , we cannot
compute the central difference and we must use forward and back-
ward finite difference schemes.

Entry-wise accuracy of linearization. The accuracy of the lin-
ear approximation of (5) under the finite difference (9) depends on
the density of the wavenumber sampling. Hence, we carefully de-
termine sampling intervals such that the error of the linearization
is below a certain threshold for all entries of the coefficient ma-
trix. The (i, j)-entry of the coefficient matrix can be written as
aij(k) = a′ijg(krij), where a′ij ∈ C is a scaling factor indepen-
dent of the wavenumber, g(γ) = exp(+iγ)(1 − iγ), and rij is
the distance between point i and point j (see (A.5) in the supple-
mental material). The Figure 8-right illustrates the trajectory of the
curve g(γ). The second derivative of this curve (|g′′| = |1 + γ|)
indicates that the error of our linear approximation is on order of
∆krij |1 + krij |, where ∆k is the wavenumber sampling inter-
val. Here, k is bounded by the wavenumber of maximum target

frequency kmax and rij is bounded by the diameter of the circum-
scribed shape D. Hence, in our paper, we chose the wavenumber
sampling interval as ∆k < 1/D|1 + kmaxD|, which can guaran-
tee that the entry-wise linearization error is less than 3%, which we
believe is a sufficient accuracy. For example, if the cavity shape is
about 10 cm and the highest target frequency is 1000 Hz, then the
wavenumber can be sampled at roughly 150Hz interval (∆k = 3).

--4

4

--4 0
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imag

4

Figure 8: (Left) our first-order approximation of the coefficient ma-
trix at a wavenumber km (green line). (Right) an entry of a BEM
coefficient matrix changes proportionally to the curve g(γ) above.
Denser sampling is required as curvature increase with γ.

Culling inaccurate resonance estimation. We can estimate
a resonance frequency for each of the sampled wavenumbers
km (m = 1, . . . ,M). After theM -number of resonance frequency
estimations, we must determine which is the most accurate. The lin-
ear approximation in (5) and (9) is accurate if kresonance and km
are close. Hence, we pick the most accurate estimation by choosing
the one that has the minimum difference between kresonance and
km. In other words, we choose a computed resonance wavenum-
ber as the best estimation if the difference is smaller than half of
the sampling interval |kresonance − km| < 0.5∆k. Furthermore,
the convergence ratio of the inverse power method is bounded by
the ratio between the magnitudes of the first and second smallest
eigenvalues |λ0|/|λ1|. Since the |λ0|/|λ1| is very small (< 10−3)
around the resonance wavenumbers (see Fig. 7), several iterations
are enough to reach convergence. If km is very far from kresonance,
convergence is slow. Hence, if a segment does not reach conver-
gence after Niter iterations, we regard this segment as far from the
resonance frequency (we use Niter = 5 in this paper).

We use BiCGStab method [van der Vorst 1992] to solve the linear
system. We did not use any preconditioner in the iterative solve, but
we observed a stable convergence in the wavenumbers we use to
simulate fundamental resonance frequency. The overall algorithm
is shown in Algorithm 1.

Algorithm 1: resonance detection algorithm at wavenumber km
1 while #iteration < Niter do
2 v← v/|v| ; /* normalizing */
3 x← A−1

m v
4 w← (Am+1x−Am−1x)/(km+1 − km−1)
5 θ ← 〈w,v〉 ; /* Rayleigh quotient */
6 if |w − θv| < ε then
7 λ0 = θ̄/|θ|2

8 kresonance = km − Re(λ0)
9 if kresonance /∈ [km−1/2, km+1/2], discard this solution

10 v← w



7 Hole Size Optimization

We have described our novel framework to simulate a resonance
frequency in response to geometry edits with a latency of several
seconds. Our system is usable with these response rates, however,
because the resonance frequencies are sensitive to hole sizes, the
user may need to make many trial-and-error adjustments. We en-
hance this design workflow with a faster real-time tone estimation
during hole resizing, and an automatic optimization of the finger
hole sizes. We use sensitivity analysis for both of these tasks.

Sensitivity-based real-time response. Let φ be the diameter of
a finger hole. When the system is idle, the tool computes a sensitiv-
ity ∂kresonance/∂φ, which denotes the linear approximation of the
resonance wavenumber change with respect to the change in hole
size. When the user is interactively changing the hole diameter φ,
the system instead estimates the resulting frequency change as

k′resonance = kresonance +
∂kresonance

∂φ
∆φ. (10)

Since this estimation does not involve expensive matrix opera-
tions, it can be computed at real-time rates (>30FPS). The user
can then quickly adjust the hole size to achieve a specific fre-
quency goal. The next time the system is idle, we compute the
higher-accuracy resonance frequency solution with the technique
described in Sec. 6, and then update the sensitivities for all open
holes.

Sensitivity computation. The sensitivity of a resonance fre-
quency can be approximated by observing how the solution changes
during one iteration of Algorithm 1 under a small change in φ. The
change in the Rayleigh quotient is approximated as

∂θ

∂φ
=

〈
∂w

∂φ
,v

〉
, where

∂w

∂φ
' −DmA−1

m

(
∂Amx

∂φ

)
.

(11)

Please refer to Appendix C for a detailed derivation. The term
∂Amx/∂φ is computed using finite differences, where a small
change is applied to the hole size and the change in Amx is mea-
sured. Using this estimated Rayleigh quotient derivative, the eigen-
value and resonance wavenumber change is computed as

∂λ0

∂φ
=

1

|θ|2
∂θ

∂φ
− 2θ̄

|θ|4 Re

(
〈 ∂θ
∂φ

, θ〉
)
, (12)

∂kresonance

∂φ
= −Re

(
∂λ0

∂φ

)
. (13)

Although this sensitivity approach is a first order approximation, it
gives strong guidance as to how much a hole size must be changed
to achieve a goal frequency. Because the relationship between the
resonance wavenumber and the hole size is nonlinear, the error be-
comes large when the hole size changes dramatically. In our exper-
iments, we observed that if the change in hole size is on the order
of the frequency of a half note, then the error in sensitivity-based
estimation is less than 10%.

AutoTune. When the user presses the “AutoTune” button, the tool
automatically optimizes multiple hole sizes using the sensitivity in-
formation. The hole size updates are computed with the Newton-
Raphson method to minimize the squared sum of wavenumber dif-
ferences between the current and target wavenumbers. The hole
size update can be written as

∆Φ =

[∑
g∈G

(
∂kg

∂Φ

)(
∂kg

∂Φ

)T
]−1(∑

g∈G

∂kg

∂Φ
(k̂g − kg)

)
, (14)

where Φ is the set of all hole size parameters, G is the set of finger
configurations where the goal is specified. For a finger configura-
tion g ∈ G, kg denotes the current resonance wavenumber and k̂g

is the goal wavenumber. The number of holes and number of target
frequencies can be arbitrary. If the number of target frequencies is
larger than the number of holes, the system returns the best possible
hole size to achieve the target.

8 Implementation Details

Our resonance simulation framework described in the previous sec-
tion is designed such that it gives interactive feedback during in-
cremental changes in the geometry. This section describes how we
implement this computation.

Local matrix update. The coefficient matrix Am is very expen-
sive to compute. Thus, when the geometry is updated, we incre-
mentally update the coefficient matrix computed from the previous
geometry rather than recomputing from scratch. In other words, we
only recompute the coefficients in the matrix that would be affected
by the geometry change. As the size of the coefficient matrix de-
pends on the number of vertices of the mesh, we constrain our mesh
edits such that the total number of the vertices does not change.

After the user finishes a geometry edit (e.g, moving a finger
hole), we determine which vertices are affected, and recompute the
columns and rows which belong to the affected vertices. This com-
putation is order O(Nn) where n is the number of the affected
vertices.

We also locally update the matrix when the geometry is scaled.
When the mesh is uniformly scaled by a factor s, we scale all the
sampled wavenumbers by the factor 1/s. This is correct because
our coefficient matrix depends only on the relative distances be-
tween two points on the surface, scaled by wavenumber (see (A.5)
in the supplemental material). The coefficient matrix and eigen-
values are unaffected and the resulting resonance frequency is just
scaled by 1/s. This agrees with the physical effect of scaling down
a musical instrument, which produces a higher pitch sound. Dur-
ing the scaling operation, we maintain the size of the mouth piece,
hence we update only the part of the matrix associated with the
vertices around the fipple.

Mesh import and export. The user can import an arbitrary 3D
manifold mesh into our design tool. Figure 9 shows the overall
procedure from mesh importing to mesh exporting. The tool first
creates an internal cavity with uniform shell thickness h (in all our
examples, h = 0.4 cm). We use a discrete signed distance field to
compute this internal cavity robustly. Next we prepare a simulation
mesh by resampling the internal cavity mesh with a specific number
of vertices and extruding it by the thickness h. After the user’s mesh
editing is finished, we join the cavity mesh and input surface mesh
by inserting the finger holes and the fipple hole. Finally, we use a
mesh Boolean operation to insert a nozzle for the fipple.

Mesh editing during simulation. During the interactive design
session, the resonance simulation is performed on the simplified
mesh (see Figure 9-(c)). Our tool allows the user to manipulate a
finger hole by placing, moving, resizing and opening/closing it. The
user can also manipulate the fipple by placing, moving and orient-
ing it. We compute these operations with mesh stitching. We first
add vertices to the mesh such that these vertices specify the outline
of the finger holes or the fipple shape. Then, we change connec-
tivity of the triangles in the mesh to insert these shapes. These
operations only modify vertex positions and triangle connectivity
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Figure 9: Overall workflow of geometry processing. (a) the in-
put mesh. (b) the simplified internal cavity mesh. (c) the mesh for
acoustic simulation. (d) input mesh and cavity mesh are joined. (e)
the final mesh with an air nozzle.

in the neighbourhood of the edit. Furthermore, in order to make
the coefficient matrix reusable, we maintain a constant vertex count
by allowing floating/disconnected vertices. Although these float-
ing vertices are not part of the simulation mesh, they have reserved
spaces in the coefficient matrix. The entries of the coefficient matrix
are adjusted for these floating vertices such that they are decoupled
from the active vertices. By limiting the number of the finger holes,
we constrain the maximum number of vertices that may be used in
the mesh, thus we can maintain a constant-sized matrix for solving
during shape editing.

Sound synthesis. During editing, the system plays the predicted
resonance sound from a speaker. As our system only predicts fun-
damental frequencies, no overtones or timbre are simulated. Since
a sound with only one frequency sounds artificial, we create a more
natural sound by heuristically widening the peak using a normal
distribution with 3.0 Hz standard deviation. The audio waveform is
then generated by an inverse fast Fourier transform.

9 Results

Figure 1, 10, 15 and 17 show sixteen wind instruments created us-
ing our tool. Figure 1, 15 and 17 show various free-form instru-
ments, which are designed to play a specific song. The input mod-
els were selected from a public 3D model-sharing website, with
choices inspired by the theme of their songs. In addition, we made
three instruments that have elongated flute-like shapes (see Fig-
ure 10), which were modeled using Teddy [Igarashi et al. 1999].
These free-form shapes would be difficult to approximate with an
assembly of easily-analyzable primitives such as tubes, cones, or
spheres. Specifically, several of our results have non-convex inte-
rior cavities, such as the star-shaped instrument in Fig. 1. We en-
courage readers to watch the accompanying video to hear the wind
instruments’ sound. We also include 3D-printable mesh files of
these instruments’ shapes in the supplemental material.

Figure 17 shows the simulated frequencies (blue lines) and the tar-
get frequencies (red lines) for various instrument shapes. With our
design system equipped with the interactive simulation and opti-
mization, the user can design instruments in which simulation fre-
quencies agree with target frequencies. Furthermore, we have been
able to achieve between 5 to 8 target frequencies for the shapes we
have tested, with three to four finger holes. For example the BUNNY
model can play eight tones with four holes. Without out interactive
simulation feedback, it would be difficult to explore such designs
since each hole cannot be tuned independently.

C
D
E
F
G
A

C
D
E
F
G
A

C
D
E
F
G
A

1000Hz 1000Hz 500Hz1800Hz 1800Hz 900Hz

FLUTE1 FLUTE2 FLUTE3

Figure 10: Flute-like free-form musical instruments designed using
our system. Red lines shows the frequencies of target notes and the
light and dark green lines show ranges of the measured frequency.

Accuracy. Figure 17 compares the target frequencies and actual
measured frequencies of the instruments we designed. Red lines are
the target frequencies, while the measured frequencies are shown as
ranges between the light and dark green lines. This range occurs be-
cause the sound is influenced by the speed of blowing (higher speed
produces higher frequencies). We gradually increased the blowing
speed and recorded the lowest and highest frequencies that produce
clear sound. We observe that the target frequencies generally fall
within measured ranges, i.e., the user can play the exact tones with
proper blowing speed. This type of fine-scale tuning by adjusting
the blowing speed is very common in wind instruments.

Among the 104 target frequencies we created with various instru-
ment shapes, we experienced only 4 instances where the instrument
could not play a target frequency: at the highest frequencies of
BEETHOVEN, BUNNY, LIZARD and FLUTE3. Each of these er-
rors is observed where the instrument produces one octave higher
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Figure 11: (Top) passive resonance measurement setup. Sound
from a loud speaker is recorded with a microphone for various fre-
quencies. (Bottom) sharp pressure drops in the frequency response
indicate resonance frequencies of the cavities. The measured fre-
quencies (solid lines) agree well with the simulated resonance fre-
quencies (dotted lines).



than the lowest frequency. This occurs because the simulation loses
accuracy when the total area of the finger holes becomes large com-
pared to the cavity surface area. These frequencies are at most 3%
lower than the target frequency, i.e., the deviation is smaller than
half of the deviation of the flat tones. Although we did not tune
these instruments at all, such small deviations can be easily fixed
by tuning.

To eliminate the effect of the blowing speed, we also analyzed
passive resonance frequencies of the cavities. We measure how
the magnitude of reflecting sound emitting from a sound source
changes with respect to the frequency. Figure 11-top shows our
measurement setup, where we hang an instrument in the air, then
emit sound of various frequencies with a speaker, and record the
reflected sound with a microphone. This experimental set-up is
common in finding the frequency response between input and out-
put [Benade and Ibisi 1987]. With constant energy input, the out-
put pressure drops at resonance because resonance mode requires
higher energy to drive it. We used the software FuzzMeasureTMto
sample the reflection magnitude across many different frequencies.
Note that the resonance frequency is insensitive to the location of
the microphone and sound source, thus we sampled the spectrum
with several miscophone/speaker spatial configurations and aver-
aged them. Figure 11-bottom shows the comparison of simulated
resonance frequency against measured passive resonance frequency
for the SHEEP model and CUBE models. The CUBE has three holes
and an edge length of 4cm. We observed up to 10 Hz deviation
between the simulation and the experiment.

In Figure 12, we explored the effect of simulation accuracy by vary-
ing the mesh resolution (i.e., the number of vertex N ) and also
the number of sampled wavenumbers M . The predicted resonance
frequencies converge smoothly to the experimental result as these
numbers are increased. All the designed examples shown in the pa-
per are made with N = 1700 and M = 5 to maintain interactivity
with reasonable accuracy. Since changes in the blowing speed can
easily compensate for a 10Hz error, we believe the parameters we
used are reasonable.
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3 4 5 6 70.5k 1.0k

600

800

1000 1000

800

600

400

N M

hole2

hole1hole3

1.5k 2.0k
400

8

Hz Hz

Figure 12: Change in the resonance frequency with respect to the
mesh resolution and the number of the sampled frequencies. Dotted
lines shows resonance frequencies obtained from the actual physi-
cal measurement. In the legend, ◦ ◦ • means that hole 1 and hole 2
are open and hole 3 is closed.

We optimize the hole size of the CUBE and CAT models such that
they can produce three different target tones. Our AutoTune op-
timizes the sizes of the holes such that the simulated frequency is
within 2 Hz. The optimization took two iterations and 24 seconds
in total for the CUBE model and three iterations and 41 seconds for
the cat model. Figure 13-top shows close-ups of the holes before
and after AutoTune.

Next, we verified the accuracy of our matrix interpolation approach
(Sec. 6) in our fast approximation of the smallest minimum eigen-

value over a range of frequencies. We compared our frequency
estimation result (M = 5) against the ground truth frequency
sweep where the magnitude of eigenvalues sampled with a small
frequency interval (0.1 Hz). Figure 13-bottom compares the ground
truth and our resonance frequency prediction for the CUBE and CAT
models. We observe that our resonance frequency estimation agrees
well with the peaks of the eigenvalue spectrum (error for six tones
was within 3 Hz.)
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Figure 13: (Top) the optimization of the hole sizes using the Au-
toTune for the CUBE (left) and CAT (right) model. (Middle) com-
parison between frequency sweep of the eigenvalues for very small
sampling interval (curves) and our estimation of resonance fre-
quency (vertical lines). (Bottom) comparison between the initial
resonance frequencies, target frequencies, optimized resonance fre-
quencies after AutoTune and ground truth resonance frequencies
obtained from frequency sweep of the eigenvalue.

Performance. We profile the speed of the each iteration of reso-
nance simulation, total time to find the resonance frequency from
scratch, and the speed of updating the resonance while editing the
mesh. Table 1 lists statistics for our examples, measured on a Mac-
Book Pro with Core i7 (3.0GHz) CPU. We observed that the per-
formance is quadratic in the mesh vertex count, as the dense matrix
update is the bottleneck. Since performance is determined by the
mesh size, and we held mesh size fixed, all the models in Figure 17
exhibit timings similar to the CAT and PIG models in Table 1. Our
tool is written in C++ and the entire resonance computation is per-
formed by a single CPU thread. We use Lapack implemented on
the Intel Math Kernel LibraryTMto efficiently compute the matrix-
vector product for the linear solver. On average our tool runs at 5
frames-per-second and the resonance frequency can be computed
in several seconds after the user completes geometry manipulations
(opening/closing, relocating a hole). Compared to the frequency
sweep approach with a 10 Hz frequency interval, our tool achieves
at least a 50× speedup. Our tool provides sufficient interactivity
to design functional free-form wind musical instruments shown as
in Figure 17. Note that our implementation could be significantly
faster with multi-threading or stream processing, since we can in-
dependently construct the coefficient matrix and compute the reso-
nance for each wavenumber sampling point.

3D printing. We print the designed wind instruments using PLA
filament on a MakerBot Replicator 2 printer, which is a widely
available printer/material combination. In order to create an empty
cavity inside the shape, we cut the model in half, print each half



Shape #vtx. #tri. time/iter. # iter. time ini. time open/close time move time freq. sweep
CAT 1.70k 3.40k 0.149s 15 14.6s 2.2s 2.0s 2m15s
PIG 1.70k 3.40k 0.151s 15 14.8s 2.1s 1.9s 2m16s
CUBE (60% res.) 0.97k 1.94k 0.047s 15 4.2s 0.85s 0.70s 39.2s
CUBE 1.65k 3.30k 0.127s 15 12.9s 2.1s 2.0s 1m59s
CUBE (150% res.) 2.55k 5.10k 0.305s 15 32.6s 6.2s 5.8s 2m57s

Table 1: Statistics and timing; the number of vertex (#vtx.), the number of triangles (#tri.), average time for each iteration (time/iter.),
maximum total number of iterations to find resonance frequency (#itr.), initialization time to compute coefficient matrices for all wavenumber
points prior to the design session (time ini.), average time for updating the resonance frequency for opening/closing a finger hole (time
open/close), average time for updating the resonance frequency for moving a finger hole (time move), and total computation time for updating
resonance frequency using the frequency sweep approach (time freq. sweep).

separately, and then glue the halves together. The cutting was
done manually using a standard mesh editing software, with the cut
placed such that we can remove the support material inside the cav-
ity after printing. We carefully orient each part on the print bed so
that the joint faces are not covered with support material, to produce
a cleaner assembly. Note that with a powder-based 3D printer, this
cutting step would be unnecessary, as we can extract the powder via
the finger holes.

Saxophone mouthpiece. We also tested our approach with a
saxophone mouthpiece, which uses a reed (i.e., a thin mechanically
vibrating sheet) as the excitation mechanism. In the simulation, the
saxophone mouthpiece is modeled as a completely closed geome-
try, whereas the fipples in our other examples are modeled as holes
with a sharp edge. We used an actual saxophone mouthpiece by
plugging it into a socket added to the 3D-printed cavity geometry.
Figure 14 shows an example instrument with a saxophone mouth-
piece. We observed that with this configuration the generated tones
still agree well with the simulation.
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E

F

Figure 14: (Left) free-formed instrument with saxophone mouth-
piece. (Middle) simulation mesh for resonance frequency predic-
tion. (Right) the measured tone agrees with the simulation except
for the lowest two notes (A,B) by a small margin.

10 Discussion

Material dependency. We solve
the Helmholtz equation under the
assumption that the surface re-
flects the sound wave perfectly (2).
If the wall is soft, the reso-
nance frequency is affected as
the object surface vibrates, altering the phase and ampli-
tude of reflection wave. To examine the effect of the
printing material, we printed the SHEEP instrument with a
Objet Connex 260 3D printer [http://stratasys.com] with the
VeroWhitePlusTMmaterial (inset-middle), and with an Autodesk
EmberTMprinter [https://ember.autodesk.com/] with UV-curable
resin material (inset-right). Although these printers have signifi-

cantly higher resolution than consumer FDM printers (inset-left),
we did not observe any audible difference in fundamental tone be-
tween the three prints. Note that we did not sand, grind or smooth
the interior of the 3D shapes, and our experimental results were
still very accurate. We conclude that surface roughness has only a
small effect on the dominant frequency. Also at the object scales
we explored, fabrication error is small compared to the range of
frequencies the mouthpiece can produce by changing the blowing
speed. Please refer to the supplemental video for a demonstration.

Size dependency. To explore generality of our simulation across
instrument sizes, we also made some quite large wind instruments.
As discussed in Sec. 8 and Appendix A, the system matrix is invari-
ant under scaling of geometry and wavenumber. This means that if
the geometry is scaled by a factor of two, the resonance frequency
is reduced by half (one octave lower). To validate this we printed
models at scales of 3/2×, 2×, and 3×, and analyzed recordings
to see whether they produced sound with frequencies 2/3×, 1/2×,
and 1/3× lower than the original frequency. Fig. 15 show the result
of this analysis with the HEN model. The scaled models generate
lower tones at the predicted ratios, implying that our simulation can
be applied at varying scale.

HEN
Song:
   Old MacDonalds Farm
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3 holes 5 tones
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Figure 15: Scaled instruments. The geometry of HEN model
(5cm×5cm×7cm) is scaled by 1.5×, 2×, and 3× and the result-
ing sound is recorded.

Helmholtz resonator model. Some of the qualitative behaviors
of our free-form resonator (e.g., larger finger holes produce higher
pitch) can be explained with the Helmholtz resonator model (see
Figure 3-left). However, we cannot use the Helmholtz resonator
model as a low order approximation, or for a quantitative predic-
tion of resonance frequency. Figure 16 compares our resonance
frequency prediction with that produced by the Helmholtz res-



onator model for the STAR instrument shown in Figure 1. For
the Helmholtz resonator model, we employed Rayleigh’s end cor-
rections for a circular aperture on a thin wall [Howe 1998]. The
Helmholtz resonator model does not take into account the cavity
shape or the interference between multiple holes, and thus it is inap-
plicable for free-form wind instruments with multiple finger holes.

G
A
B
C
D
E

Helmholtz resonator model

Helmholtz resonator model
with end corrections

600Hz 1000Hz 2000Hz

Figure 16: Comparison of the resonance frequency prediction be-
tween our method (red) and the Helmholtz resonator model (dark
purple) and the Helmholtz resonator model with end corrections
(light purple). We used for the STAR instrument. While our pre-
diction agrees with the measured ground truth data (light and dark
green), the Helmholtz resonator model is significantly inaccurate.

The three flute-like instruments in Fig. 10 are much longer along
one axis and thus are known to be more accurately modeled by the
air column resonator. For example, when all the holes are closed,
the FLUTE1 produces 600 Hz sound whose wavelength (54cm) is
approximately four times the flute’s length (12cm). This agrees
with the air column vibration model with one open end (see Fig-
ure 3-middle). Our model is based on the wave equation, thus is
not limited to the primitive shapes that simple models can handle.
Please see supplemental videos for sample sounds.

The bottlenecks in our resonance simulation are the construction
of the coefficient matrices and the matrix-vector products. These
computations areO(N2) since the straightforward implementation
of BEM requires dense matrices. To further improve performance,
we applied the fast multipole method [Coifman et al. 1993] which
reduces the order to O(N logN). However, we only observed a
10-20% speedup at our problem scale N = 1.6k. This is because it
is difficult to find a good decomposition (i.e., separating geometry
with minimum overlap) of the smooth, featureless cavity surface.

Limitations and future work. To make interactive free-form
wind-instrument design tractable, we simulated the dominant tone
of a free-form musical instrument, and ignored the effects of timbre.
Simulation of timbre requires the computation of the entire spec-
trum, including overtones and also modeling of the mouthpiece.
As the mouthpiece greatly affects the timbre, the design and opti-
mization of the mouthpiece is an interesting area for future work.
Example-based modeling of the mouthpiece would be an interest-
ing way to add timbre specification to our system.

The range of frequencies a wind instrument can achieve depends
on the resonator’s shape. For example, it is known that achieving
a frequency range beyond one octave is difficult for a sphere-like
resonator [Fletcher and Rossing 2010]. We are interested in opti-
mizing the overall shape of resonators to achieve arbitrary target
frequencies.

We presented a technique to predict resonance frequencies for the
Helmholtz equation interactively in the context of free-form instru-
ment design. Aside from music applications, resonance simulation
is important in many engineering applications such as design of
acoustic devices (e.g, speaker enclosure and mufflers) or electro-
magnetic devices (e.g., antenna and waveguides).

11 Conclusion

We presented an interactive interface to design free-form wind in-
struments. The dominant tones of the instruments’ sound are mod-
eled as the resonance frequency, which can be formulated as the
smallest minimum eigenvalue of the nonlinear system matrix. Then
we present a new discrete wavenumber sampling approach to effi-
ciently compute such smallest minimum eigenvalues. We demon-
strated the effectiveness of our approach with numerous functional
free-form instruments designed with our tool, and with many quan-
titative experiments.
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JAMES, D. L., BARBIČ, J., AND PAI, D. K. 2006. Precom-
puted acoustic transfer: Output-sensitive, accurate sound gener-
ation for geometrically complex vibration sources. ACM Trans.
Graph. 25, 3 (July), 987–995.

KIRKUP, S. M. 1998. The Boundary Element Method in Acous-
tics: A Development in Fortran (Integral Equation Methods in
Engineering). Integrated Sound Software, 10.

LEFEBVRE, A., AND SCAVONE, G. P. 2012. Characterization of
woodwind instrument toneholes with the finite element method.
The Journal of the Acoustical Society of America 131, 4, 3153–
3163.

LI, D., FEI, Y., AND ZHENG, C. 2015. Interactive acoustic
transfer approximation for modal sound. ACM Transactions on
Graphics 35, 1.

LI, D., LEVIN, D. I., MATUSIK, W., AND ZHENG, C. 2016.
Acoustic voxels: Computational optimization of modular acous-
tic filters. ACM Trans. Graph. (to appear) 35, 4.

LORENZONI, V., DOUBROVSKI, E., AND VERLINDEN, J.
2013. Embracing the digital in instrument making: Towards a
musician-tailored mouthpiece by 3d printing. In Proceedings of
the Stockholm Music Acoustics Conference.

LU, L., SHARF, A., ZHAO, H., WEI, Y., FAN, Q., CHEN, X.,
SAVOYE, Y., TU, C., COHEN-OR, D., AND CHEN, B. 2014.
Build-to-last: Strength to weight 3d printed objects. ACM Trans.
Graph. 33, 4 (July), 97:1–97:10.

MOHRING, J. 1999. Helmholtz resonators with large aperture.
Acta Acustica united with Acustica 85, 6, 751–763.

MUSIALSKI, P., AUZINGER, T., BIRSAK, M., WIMMER, M.,
AND KOBBELT, L. 2015. Reduced-order shape optimization
using offset surfaces. ACM Trans. Graph. 34, 4 (July), 102:1–
102:9.

NEDERVEEN, C. J. 1998. Acoustical Aspects of Woodwind Instru-
ments, Revised Edition, rev sub ed. Northern Illinois University
Press, 7.

O’BRIEN, J. F., COOK, P. R., AND ESSL, G. 2001. Synthesizing
sounds from physically based motion. In Proceedings of SIG-
GRAPH 2001, 529–536.
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