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Abstract

We propose a novel cross-sectional structural analysis technique
that efficiently detects critical stress inside a 3D object. We slice
the object into cross-sections and compute stress based on bending
momentum equilibrium. Unlike traditional approaches based on
finite element methods, our method does not require a volumetric
mesh or solution of linear systems, enabling interactive analysis
speed. Based on the stress analysis, the orientation of an object is
optimized to increase mechanical strength when manufactured with
3D printing.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;

Keywords: structural analysis, optimization, 3D printing

1 Introduction

Democratized digital manufacturing devices such as desktop 3D
printers enable non-professionals to casually create physical ob-
jects. Various software packages such as MeshMixer [Schmidt
and Singh 2010] and Autodesk 123D [2010] provide end-users
with intuitive 3D modeling interfaces for 3D printing. However,
novice users often create structurally-unsound shapes which can
easily break. Analyzing structural weakness is a significant chal-
lenge. Even simple rules-of-thumb may involve considering a large
number of possible force location/magnitude combinations, and it
is hard to estimate the effect of such forces on complex 3D shapes.

Umetani et al. [2012] showed that interactive analysis significantly
helps novice users for plank-based furniture design. Our goal is
to apply a similar concept for free-form 3D objects. Traditionally,
structural validity of 3D objects was evaluated using the Finite Ele-
ment Method (FEM). However, FEM involves time-consuming 3D
mesh generation and the solution of large linear systems. As a re-
sult, FEM is generally not integrated into the real-time visualiza-
tions of interactive tools, making it difficult for users to consider
structural robustness during incremental trial-and-error design.

To achieve fast shape validation, we propose cross-sectional struc-
tural analysis. We compute a number of cross sections of an ob-
ject and compute forces on the cross sections. We extend the well-
known Euler-Bernoulli assumption [Timoshenko 1970] to greatly
reduce the complexity of the problem. The advantage of this as-
sumption is that it focuses purely on the geometric relationship be-
tween a cross section and external load, ignoring deformation out-
side the cross section. Based on this simplification, we can find the
weak parts of a 3D object at interactive rates.

∗e-mail:n.umetani@gmail.com
†e-mail:ryan.schmidt@autodesk.com

optimal
printing 
direction

(b)
pulling right fore leg

|T|=10k
t = 0.13sec

max 
weakness

min 
weakness

pulling right fore leg

broke at
0.4kgf broke at

3.7kgf

(a) 

(c) (d)

Figure 1: (a) our system visualizes structural weakness at inter-
active rates during mesh editing. (b) A computed optimal printing
direction. (c) A naı̈ve printed model easily fractures under external
force, while (d) the optimized print bears much larger forces.

Our manufacturing target is 3D printing with the Fused Deposition
Method (FDM). In this process, objects are constructed in layers,
with each layer composed of a thin filament of melted plastic [Gib-
son et al. 2009]. This layer-by-layer construction introduces signif-
icant structural anisotropy – in particular, vertical bonding between
layers is much weaker than the in-layer bonds. In this paper, we op-
timize the orientation of models for 3D printing to maximize their
mechanical strength, based on our novel cross-sectional structural
analysis.

2 Related Work

FEM has been applied for structural weakness detection to find the
worst loading scenario [Zhou et al. 2013], to strengthen [Stava et al.
2012] and to partition [Luo et al. 2012] an input 3D object. We ana-
lyze structural weakness to optimize printing direction using novel
cross-sectional structural analysis.

Make It Stand [Prévost et al. 2013] deforms objects so that they
stand upright without toppling by optimizing momentum equilib-
rium under gravity. We similarly consider momentum equilibrium,
but on cross sections under many different external forces.

Structural soundness has also been studied in graphics for masonry
design (e.g. [Panozzo et al. 2013]). Whiting et al. [2012] propose
a structural soundness evaluation function which considers bending
force between bricks. In the same spirit, we consider bending force
on cross sections to analyze structural soundness.

3 Method

Fracture criteria. Objects manufactured via layer-by-layer 3D
printing techniques such as FDM exhibit significant anisotropy;
they can bear considerable tensile force in the direction of filament
strands, while being rather fragile when forces perpendicular to the
filament strands are applied. Because FDM accumulates layers in
a certain printing direction Θ ∈ R3, the printed object will frac-
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Figure 2: Overview of our algorithm.

ture much more easily in this direction. Within a layer, filament is
usually oriented in many directions, so fracturing perpendicular to
Θ is significantly less likely. We denote σ̂L as the maximum ten-
sile stress under which a layer of filament separates. We conducted
a simple experiment to break a cantilever beam and measured the
value σ̂L as 60MPa.

An overview of our algorithm is shown in Fig. 2. In detecting possi-
ble breaking scenarios, we first assume that an object is uniformly
filled with an isotropic material which can bear maximum tensile
stress σ̂L. Next, we find a set of cross sections for which external
forces can produce a stress that exceeds σ̂L inside that cross section.
Then, we determine a printing direction Θ such that the normal of
the weakest cross sections are as perpendicular to Θ as possible.

3.1 Cross-sectional Structural Analysis

Euler-Bernoulli assumption. Before describing our method, we
briefly overview the Euler-Bernoulli (EB) assumption, on which
our cross-sectional analysis is based. Assume a beam which has
axis direction z ∈ R3, a cross section Ω of the beam that is per-
pendicular to z, and a line inside the beam – the neutral axis –
which goes through the centroid of Ω (the neutral axis has direction
z). For a beams bending deformation, the assumption is threefold
(see Fig. 3). First, there is no in-plane deformation and the cross
section Ω remains planar. Second, the deformed Ω remains (ap-
proximately) perpendicular to the deformed neutral axis. Finally,
the neutral axis does not stretch. Based on these assumptions, the
infinitesimal strain tensor ε ∈ R3×3 arising from bending is written
as ε = εz⊗ z, where ε ∈ R is a linear function over Ω and is zero
at its centroid. This assumption is widely-used in the field of engi-
neering. In the computer graphics literature, PriMo [Botsch et al.
2006] used a similar assumption of the rigidity of cross sections.
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Figure 3: Deformation of a beam under the Euler-Bernoulli as-
sumption; The cross section Ω is rigid and remains perpendicular
to the unstretched neutral axis.

While the EB assumption is a widely-used engineering model, its
application is traditionally limited to beam structures. Our chal-
lenge is to extend its application to free-form 3D objects. In this
case, the assumption is reasonable if the representative length of a
cross section Ω (e.g. circumradius) is much longer than the dis-
tance from Ω to the location the force is applied (i.e. moment arm).
Hence, the assumption becomes more accurate as the cross-section
thins and the moment-arm lengthens. Our key observation is that
these are precisely the conditions in which fracture is most likely

to occur, and hence we can still use this assumption for general 3D
shapes for the purpose of critical stress detection.
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Virtual cross-section. To implement
the EB assumption on 3D objects, we first
need to construct a cross section and neu-
tral axis (Ω, z) such that z is perpendic-
ular to Ω and passes through the centroid
of Ω. Although the medial axis [Miklos
et al. 2010] can be used to find candidates,
the medial axis is costly to generate. In-
stead we introduce a fast virtual cross sec-
tion technique to approximately generate (Ω, z). First, take an arbi-
trary cross section of the 3D object Γ which has a normal direction
n ∈ R3. We consider another section Γ′ at a small distance ∆n
that has the same normal direction n. For sections Γ and Γ′, we
compute the centroids g and g′. Next, we compute a neutral axis
direction Γ as z = (g′ − g)/|g′ − g| with infinitesimally-small
distance ∆n → 0. Finally, we get a virtual cross-section Ω by
projecting Γ perpendicular to z so that the centroid of Ω remains g.

We consider the local coordinate x and y on the virtual cross sec-
tion Ω taking the origin at centroid g. We define axis y such that it
is on the original section Γ. If the angle between n and x – denoted
θ – is large, the virtual section is no longer a good approximation of
an actual section in the direction of z. Hence, we discard sections
where θ > 45◦. We consider a fixed set of sample directions for n,
specifically the 13 unique directions of the form (A,B,C)T , where
each of A,B,C takes the values (−1, 0,+1).

External bending moment. Given a virtual cross section and its
neutral axis direction (Γ,n) → (Ω, z), we now consider bending
moment equilibrium to compute the stress on Ω. We assume the
external force f is applied at a point p on the object’s surface. The
resulting external bending moment τ ex ∈ R3 which rotates the
virtual cross section can be written as

τ ex = (I− z⊗ z) {(p− g)× f} , (1)

where I is an identity matrix. Note that τ ex is in the plane of Ω. To
achieve momentum equilibrium, the virtual cross section must gen-
erate a bending moment which balances out this external moment.
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Internal bending moment. Using the EB
assumption, we can denote z-directional
strain as a linear function of xy-coordinate
ε(x, y) = ε̄Xx+ ε̄Y y. From Hooke’s law, z-
directional stress is given as σ = Eε where
E is the Young’s modulus. We define or-
thogonal axes ξ and η such that strain is
zero (ε̄Xx+ ε̄Y y = 0) on the axis ξ. Let
ψ be the angle between ξ and x. With this
axis transformation, the strain can be denoted in ξη-coordinate as
ε(ξ, η) = ε̄ξη, where ε̄ξ = ε̄X cosψ + ε̄Y sinψ. The Internal



bending moment vector then becomes:

τ in =

∫
Ω

η(Eε)dΩξ = ε̄ξEIξξ, (2)

where Iξ is the second moment of area: Iξ =
∫

Ω
η2dΩ.

Moment equilibrium. Considering the moment equilibrium
τ ex + τ in = 0, we obtain ξ = τ ex/|τ ex| and ε̄η = |τ ex|/(EIξ).
The maximum stress on the virtual cross section can be written
as σmax = |τ ex|/Zξ, where Zξ = Iξ/|η|max and |η|max is the
maximum of the absolute value of coordinate η inside this virtual
cross section. In the engineering literature, Zξ is called the sec-
tion modulus, relating the bending moment and maximum stress.
When σmax exceeds σ̂L, this section may fracture. Note that the
maximum stress does not depend on the Young’s modulus or other
material parameters; based on the cross-section’s shape, force posi-
tion, and its direction, we can estimate stress inside the object in a
purely geometric manner.

Clustering cross-sections. So far, we have described a way
to compute maximum stress on a cross section, given an external
force. However, in a complex shape, there may be multiple dis-
joint cross-sections in a single slice, and the distribution of forces
depends on the boundary conditions (i.e. where the object is fixed,
and where the external force is applied). Hence, for a group of pla-
nar cross sections, we divide the object into two connected surfaces
S+ and S−, with S+ having smaller area than S−. Then, we apply
the force somewhere on S+ and fix the object at a point somewhere
on S−. The motivation for this heuristic is that we usually hold
the larger part of an object when applying a force. Fig. 4 illus-
trates this process. First, we compute all cross-sections of an ob-
ject {γ1, γ2, . . .} in a given plane. Then, we greedily cluster these
sections into groups Γ := {Γ1,Γ2, . . .} such that each group’s sec-
tions Γi ∈ Γ divide the object into a S+ and S−. Each group is
formed by picking an initial section γi, and then for remaining sec-
tions γj , checking if a path from γi to γj exists on each side of the
section plane. If so, γj is clustered with γi. We iterate this process
until all the sections have been separated into groups, and then for
each group Γi, we compute the virtual cross section Ωi.
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Figure 4: Three alternatives for separation of an example object
into surfaces S+ (red) and S− (blue). We apply force at some-
where on S+. The cross-sections are grouped as {Γa,Γb,Γc} =
{γ1, (γ2, γ3), γ4}. As shown in (b), γ2 and γ3 are in the same group
because it is connected from both side.

Clustering Computation. To efficiently determine if sections are
connected, we use a connectivity graph. We first compute sections
of the object at interval h along n (we use h = 32). Next we con-
struct a section adjacency graph, where sections are connected if
there is a path of triangles between them that does not cross other
sections (Fig. 5-left). We can then quickly determine if sections are
accessible from both sides using this adjacency information (Fig. 5-
right). Finally, for each section Γi we denote the set of other sec-
tions that lie on S+

i as Γ+
i , which will be used for approximate

integration in the next section.

clustering

Figure 5: Left: two cross sections are adjacent if triangles are
connecting them without crossing other sections. Right: sections
in the same plane are grouped based on adjacency information. The
neutral axis (black line) is computed for each section group.

3.2 Optimized 3D Printing Direction

The result of the analysis technique described above is a large num-
ber of combinations of cross section and external force. Next we
must detect which section/force pairs are most likely to break.

Weakness evaluation. Structural weakness of a cross section is
defined considering two factors; the magnitude of force needed to
break a section, and the area over which the force is distributed.
Let fmin(Γ,p, ψ) be the minimal force at position p on the sur-
face needed to produce the critical stress on section Ω with bending
direction ψ. From Eq.(1) and Eq.(2), we have

fmin(Γ,p, ψ) = |(I− ξ ⊗ ξ)(p− g)| σ̂LZξη (3)

Next we define a function B(Γ,p, ψ) which indicates the relative
ease with which a section/force configuration can be broken. B

is defined as 1/fmin if |fmin| < f̂max, and 0 otherwise, where
f̂max is a maximum external force (we choose 0.2 kgf). We then
define the relative weakness of a section Γi by integrating B over
the potential force point locations on S+

W (Γi) =

∫
s∈S+

i

∫
2π

B(Γi,p(s), ψ)dψds, (4)

where p(s) is the position of force point at a surface point s. We
approximate this costly surface integral by computing only on the
sections. Since the input shape is a triangle mesh, its cross sections
are polylines. Thus, we compute the integration by aggregating B
multiplied by lm, which is half the sum of the two neighboring edge
lengths for the vertex sm on a polyline. Furthermore, ψ is sampled
at intervals J (we used J = 16):

W (Γi) '
2πh

J

∑
Γk∈Γ

+
i

∑
sm∈Γk

lm

J∑
j=1

B

(
Γi,p(sm),

2πj

J

)
, (5)

We further accelerate computation by culling sections Γk ∈ Γ+
i

which cannot break the cross section Γi. This is accomplished by
computing the bounding volume of Γk (we used the circumcircle
as a bounding volume) and checking that the minimum breaking
force |fmin| is larger than the maximum-force threshold f̂max for
all points on the section.

Print Orientation Optimization. Using the machinery described
thus far, we can proceed to optimize the object orientation for
printing. For a set of given normal directions n, we slice the
object at intervals h and compute our weakness metric W (Γi)
for all sections, and then store the identified “weak” sections as
Γw := {Γj ∈ Γw|W (Γj) 6= 0}. Once the weak cross-sections
are detected, we need only to select an optimal printing direction.
As we previously mentioned, objects printed with FDM are mostly



likely to break between layers. Since the bending moment excites
force in the direction of neutral axis z, the object should be oriented
such that z is as vertical as possible. Hence, we use our weak-
ness metric to weight the neutral axis directions zj corresponding
to identified weak sections Γj , and then obtain the optimal printing
direction Θopt as

Θopt = arg min
Θ∈R3,|Θ|=1

∑
Γj∈Γw

Θ ·W (Γj)zj . (6)

Eq. (6) can be solved by eigen-analysis of a 3x3 symmetric positive
definite matrix

∑
Γj∈Γw W (Γj)zj ⊗ zj . The smallest eigenvec-

tor gives the strongest printing direction Θopt. Note that in some
cases no printing direction can strengthen all weak cross sections.
However we have observed that such cases are rare.

4 Results

In Fig. 6, we compare our method with a standard second-order
linear FEM stress analysis. The force distribution on two different
virtual cross sections is displayed. As expected, when the initial
section is relatively orthogonal to the local surface, so is the vir-
tual section, and the force magnitude/directions agree well with the
ground-truth FEM. As the virtual section diverges from the original
section, the directions necessarily diverge as well, but the maximum
magnitudes remain comparable. Unlike FEM, our method is not af-
fected by the quality of the surface mesh. Degenerate and “skinny”
sliver triangles are common in CAD meshes, but they do not affect
our computation (see Fig. 7-rightmost).
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Figure 6: Comparison with FEM. Cyan vectors show FEM forces,
purples are ours, blue loops are original input cross section, and
green loops are virtual cross sections.

We also implemented our technique in a 3D mesh modeling
tool [Schmidt and Singh 2010]. The accompanying video shows
interactive modeling sessions with our structural analysis running
on a background thread, and updating real-time visualizations when
the model is edited. Fig. 7 shows weak regions, optimal printing di-
rections, and computation times for various objects. Our algorithm
scales well up to detailed meshes. In the video, we see the visual-
ization update for a mesh with 650k triangles in a few seconds.

We 3D printed several models shown in the figures, and applied
forces to evaluate their strength (see Fig. 1 and accompanying
video). We used the MakerBot Replicator 2 and MakerWare v2.2
for printing, with the objects printed as solid (100% infill) to maxi-
mize strength. The material we used was polylactic acid (PLA) fila-
ment. Our algorithm assumes the object breaks with bending force,
hence it cannot handle complex fracture such as buckling. How-
ever, we observed that the locations where objects fracture agreed
well with the weakest cross-sections our algorithms identified, and
that our optimal orientation makes objects significantly stronger.

5 Conclusion

We present a framework for structural weakness detection of 3D ob-
jects which is fast enough to provide real-time feedback during 3D
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Figure 7: More examples. |T | is the triangle count, and t is the
total time taken to compute our cross-sectional analysis (using an
Intel XeonTM2.5 GHz CPU machine). Red arrows show the optimal
printing directions.

shape editing. Based on this analysis we optimize the orientation of
the model for 3D printing to increase structural soundness.
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