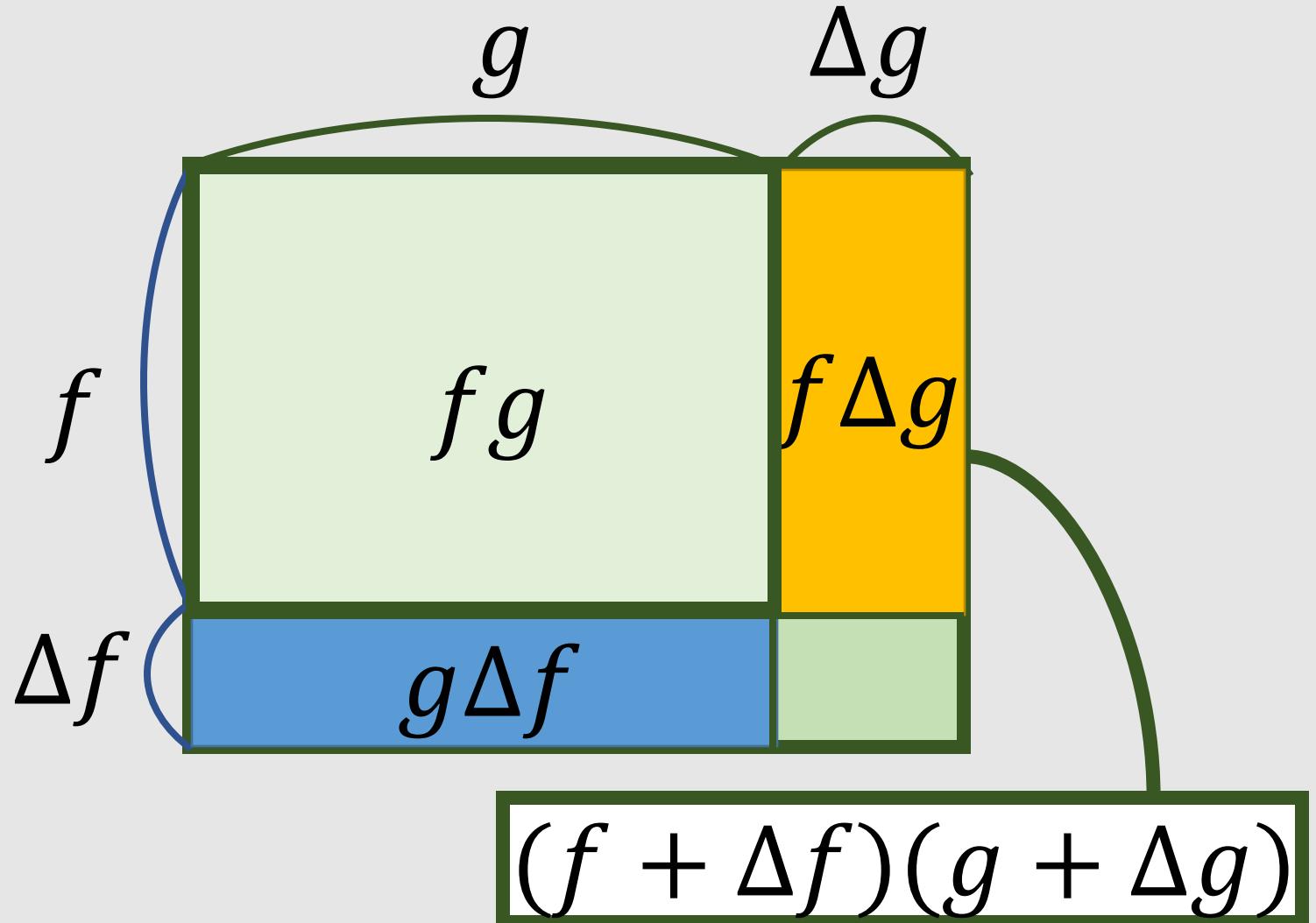


Vector Differentiation

Fréchet derivative

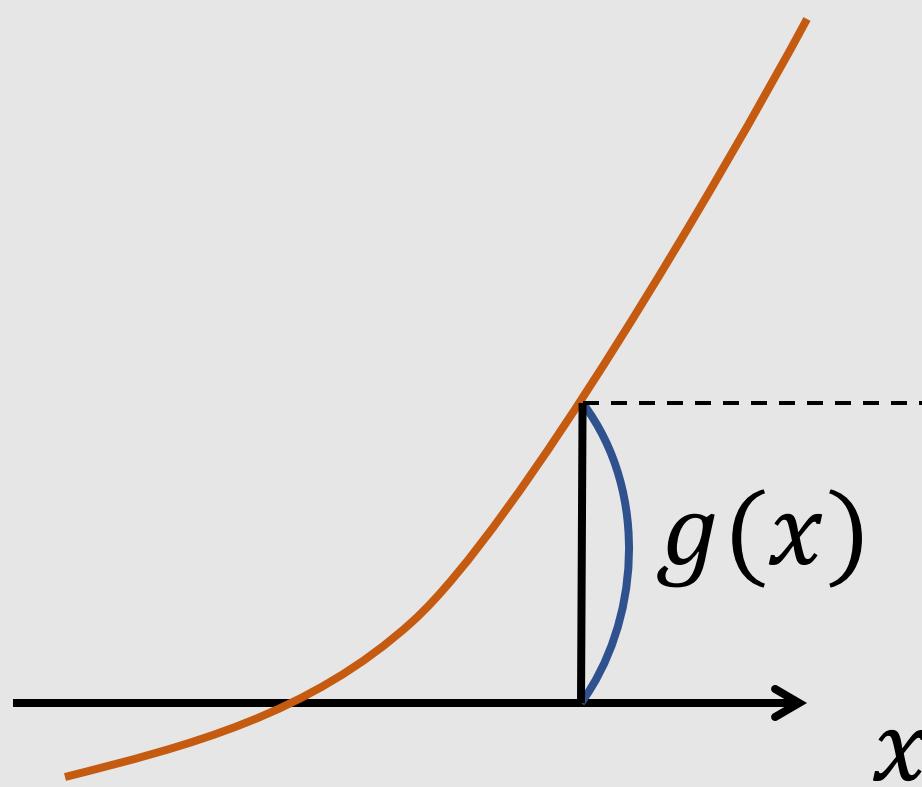
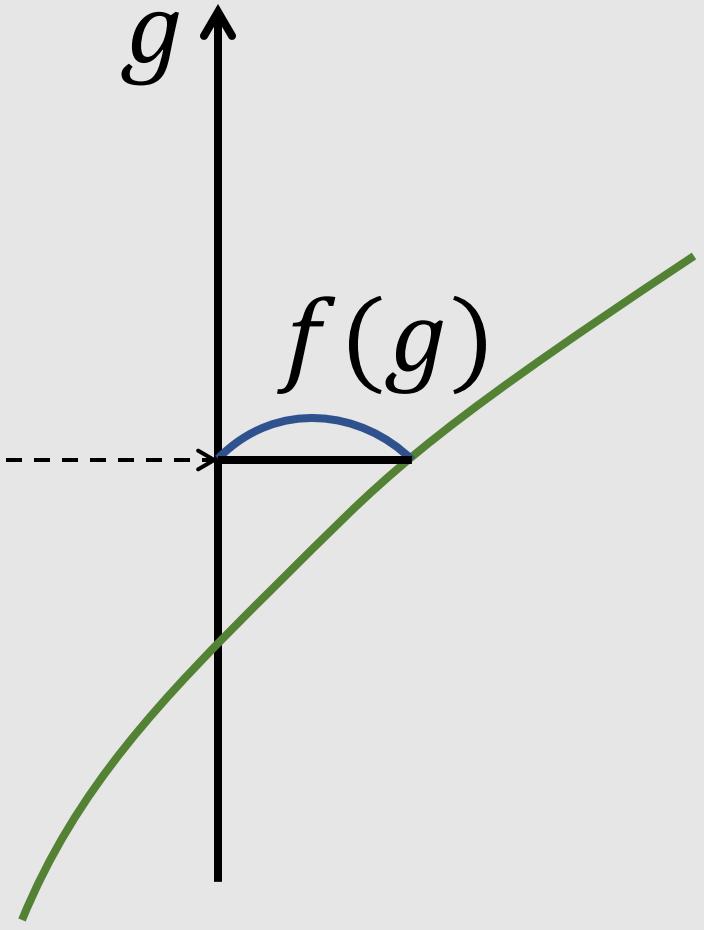
Review of Differentiation Rules: Multiple

$$(fg)' = f'g + fg'$$



Review of Differentiation Rules: Composite

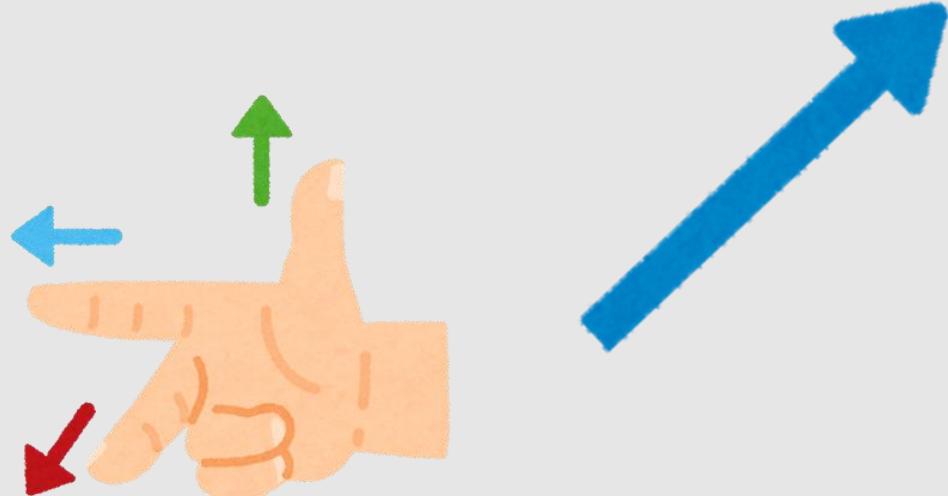
$$f'(g(x)) = f'(g(x))g'(x)$$



Two Ways to Understand Vector

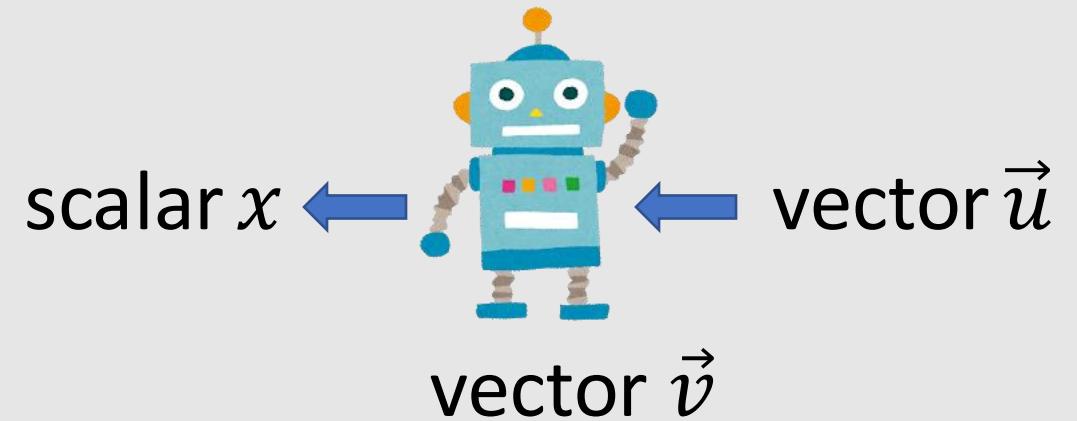
- Dot product define linear relationship between input & output

Spatial direction or position



Linear form

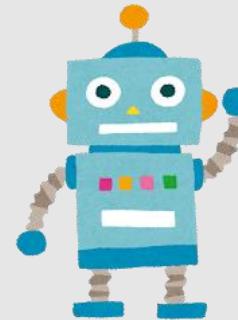
$$x = \vec{v} \cdot \vec{u}$$



Differential of a Scalar Function w.r.t. Vector

- Inner product with $d\vec{p}$ gives difference dW

$$dW = \frac{\partial W(\vec{p})}{\partial \vec{p}} \cdot d\vec{p}$$



vector

Since $d\vec{p}$ and dW change linearly, $\partial W(\vec{p})/\partial \vec{p}$ should be a vector

Differential of a Scalar Function w.r.t. Vector

- The differential can be written as

$$\frac{\partial W(\vec{p})}{\partial \vec{p}} = \frac{\partial W}{\partial p_1} \vec{e}_1 + \frac{\partial W}{\partial p_2} \vec{e}_2 + \frac{\partial W}{\partial p_3} \vec{e}_3$$

check it out!

Let's Practice Differentiation!

$$W(\vec{p}) = \vec{a} \cdot \vec{p}$$

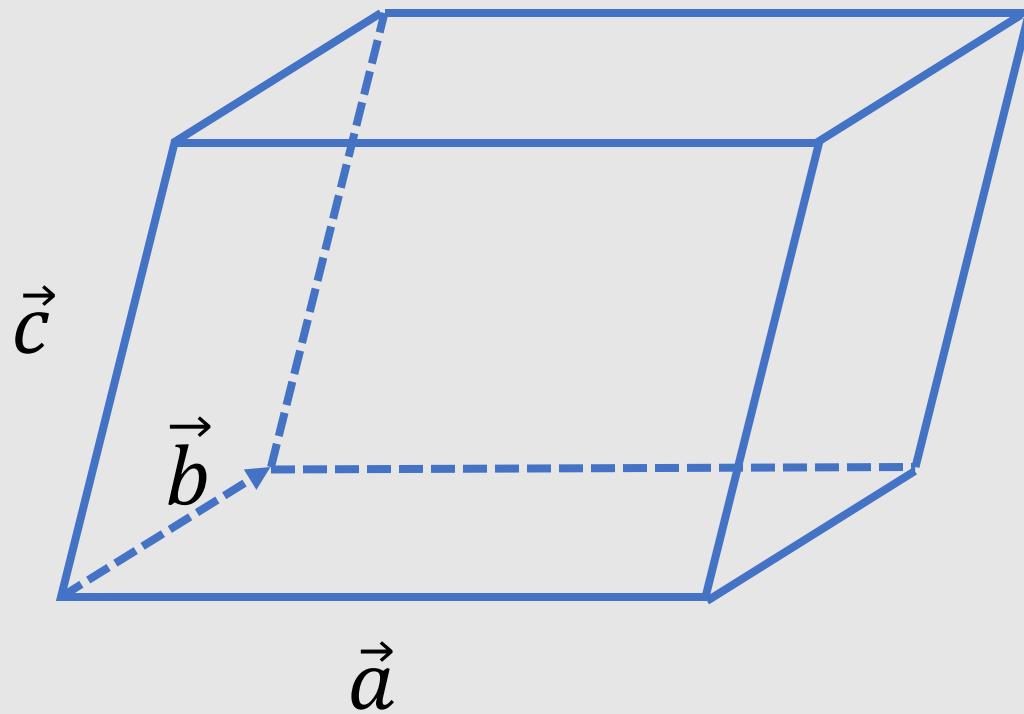
$$W(\vec{p}) = |\vec{p}|^2$$

$$W(\vec{p}) = 1/|\vec{p}|$$

check it out!

Scalar Triple Product (スカラー三重積)

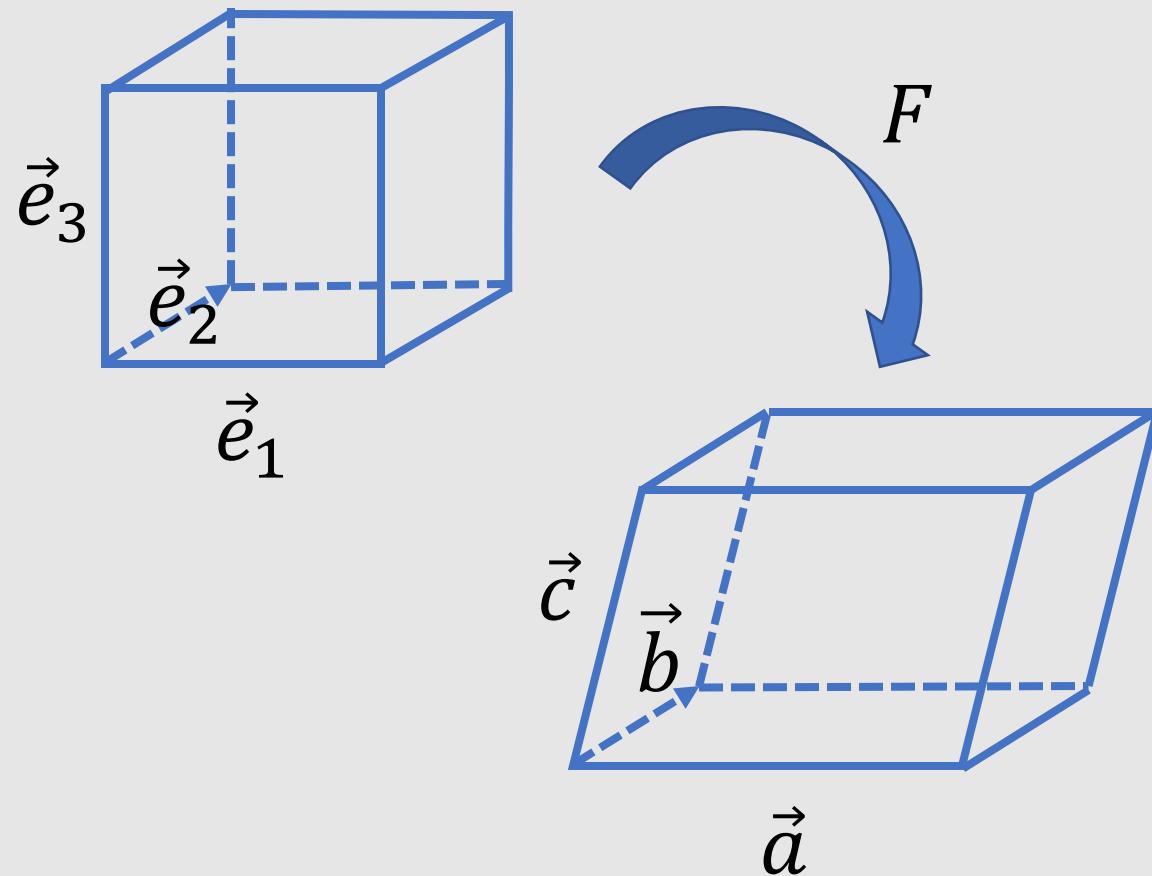
- Volume of parallelepiped



$$W = \vec{a} \cdot (\vec{b} \times \vec{c})$$

Scalar Triple Product and Determinant

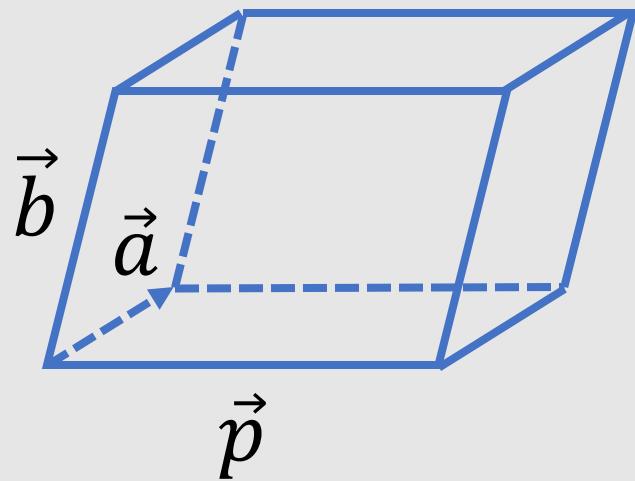
- Scalar triple product is related to the volume change ratio



$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \det \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$

F

Differential of Scalar Triple Product



$$W(\vec{p}) = \vec{b} \cdot (\vec{a} \times \vec{p})$$

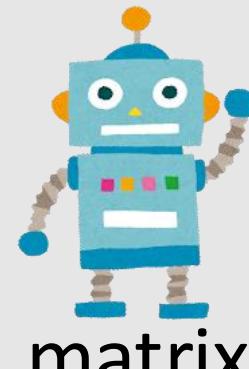
$$\frac{\partial W}{\partial \vec{p}} = ?$$

check it out!

Differentiation of Vector w.r.t. Vector

- Inner product with $d\vec{p}$ gives difference $d\vec{F}$

$$d\vec{F} = \frac{\partial \vec{F}(\vec{p})}{\partial \vec{p}} \cdot d\vec{p}$$



Since $d\vec{F}$ and $d\vec{p}$ change linearly, $\partial \vec{F}(\vec{p}) / \partial \vec{p}$ should be a matrix

Differentiation of Vector w.r.t. Vector

- Inner product with $d\vec{p}$ gives difference $d\vec{F}$

$$\frac{\partial \vec{F}}{\partial \vec{p}} = \frac{\partial F_1}{\partial p_1} \vec{e}_1 \otimes \vec{e}_1 + \frac{\partial F_1}{\partial p_2} \vec{e}_1 \otimes \vec{e}_2 + \frac{\partial F_2}{\partial p_1} \vec{e}_2 \otimes \vec{e}_1 \dots$$

$$= \sum_i \sum_j \frac{\partial F_i}{\partial p_j} \vec{e}_i \otimes \vec{e}_j$$

Let's Practice Differentiation!

$$\vec{F} = A \cdot \vec{p}$$

$$\vec{F} = \vec{p}$$

$$\vec{F} = (\vec{a} \cdot \vec{p}) \vec{b}$$

$$\vec{F} = \vec{p} / \|\vec{p}\|$$

check it out!

Differentiation w.r.t Vectors

- Transform the equation into a polynomial

$$\begin{aligned} W(\vec{\omega}) &= \dots \\ &= \dots \\ &= \textcolor{red}{a} + \vec{b}^T \vec{\omega} + \vec{\omega}^T C \vec{\omega} + \dots \end{aligned}$$

Gradient: $\frac{\partial W}{\partial \vec{\omega}} = \vec{b}$

Hessian: $\frac{\partial^2 W}{\partial \vec{\omega}^2} = C^T + C$