

Time Integration

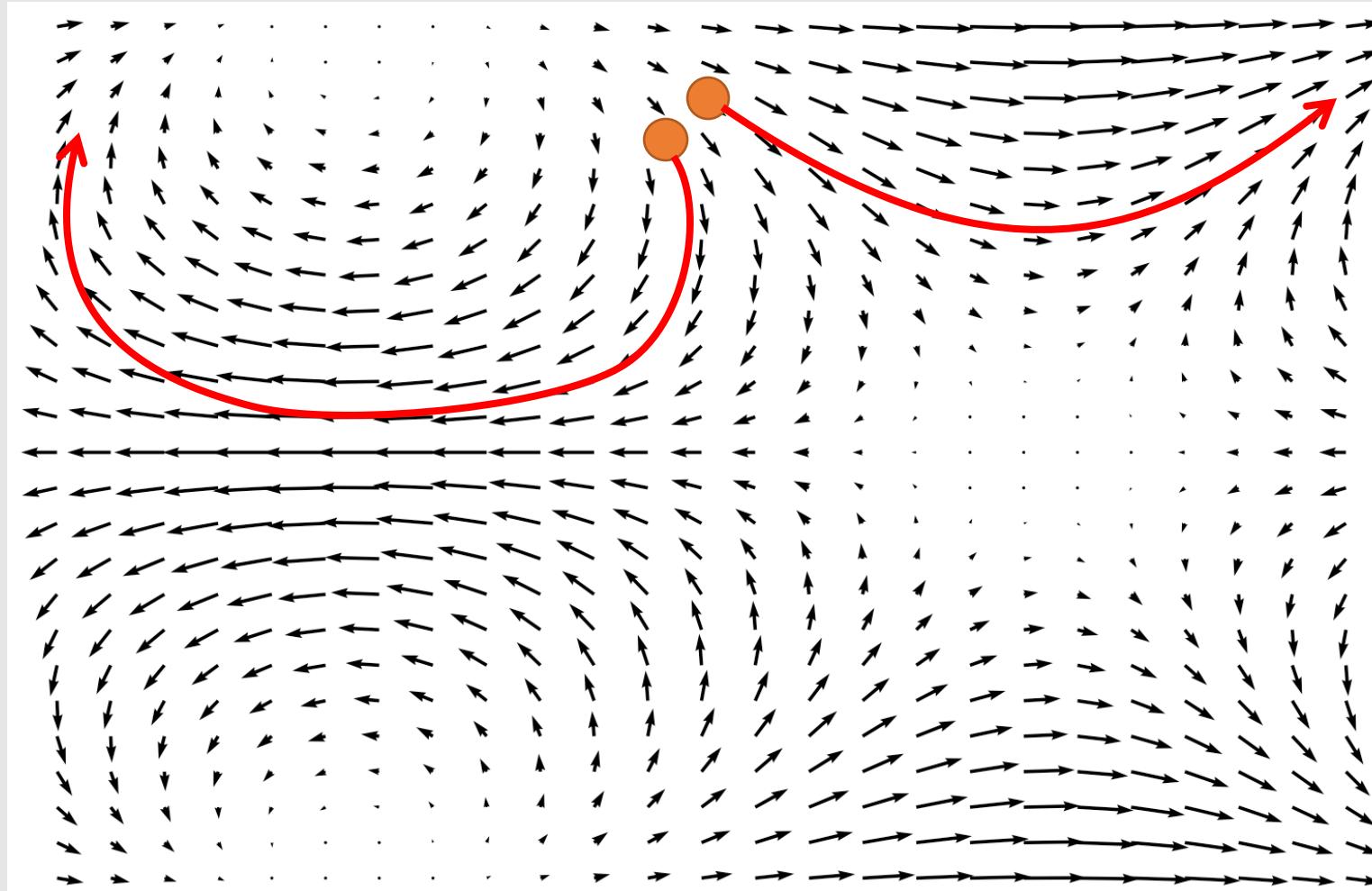
時間積分

System of Differential Equations

連立線形微分方程式

Tracing a Particle in a Velocity Field

- E.g., massless particle in a steady flow



System of 1st Order Differential Equations

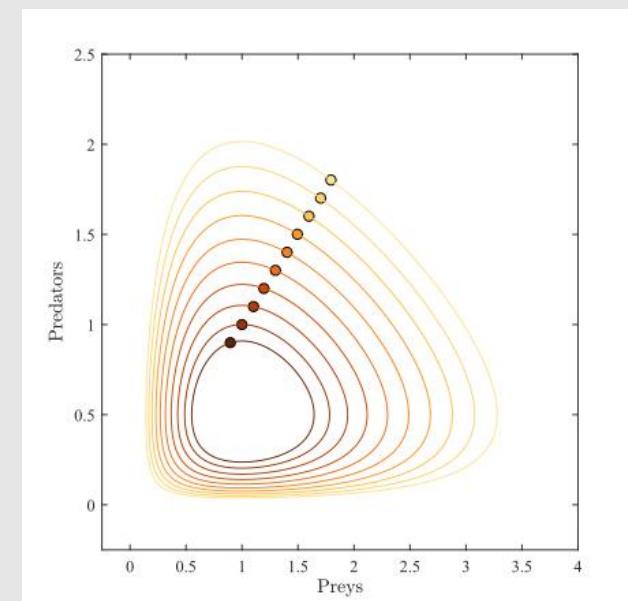
- Moving a particle inside a vector field
 - Electrical engineering
 - Control theory
 - System biology

$$\frac{d\vec{x}}{dt} = f(\vec{x})$$

Lotka–Volterra equations
(a.k.a predators/preys equation)

$$\frac{dx}{dt} = \alpha x - \beta xy$$

$$\frac{dy}{dt} = \delta xy - \gamma y$$



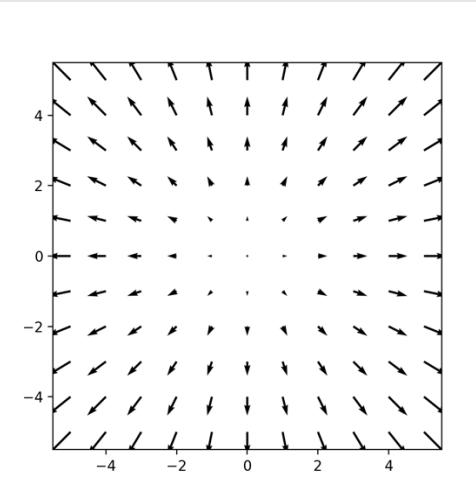
(Wikipedia: Lotka–Volterra equations)

Linear 1st Oder System of Diff. Eqn.

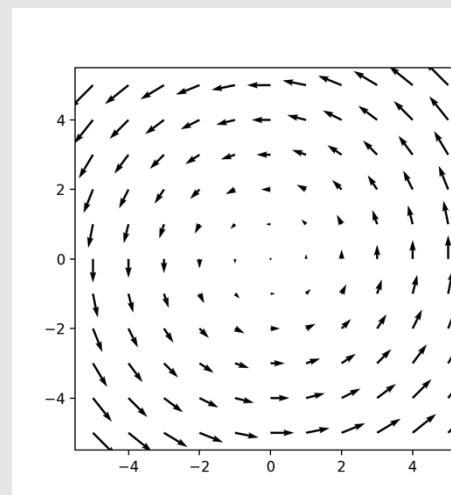
- What if $f(\vec{x})$ is linear?

$$\frac{d\vec{x}}{dt} = A\vec{x}$$

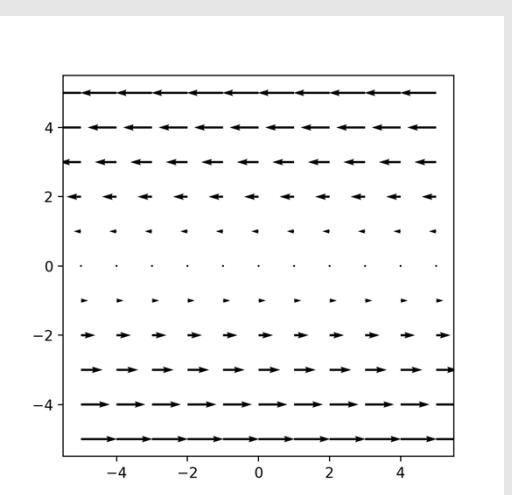
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$



$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$



$$A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$



Solution of Differential Equations

1st order differential equation

$$\frac{dx}{dt} = ax$$

$$x(t) = e^{at}x(0)$$

System of 1st order differential equations

$$\frac{d\vec{x}}{dt} = A\vec{x}$$

$$\vec{x}(t) = e^{At}\vec{x}(0)$$

Matrix Exponential

- The Taylor expansion of the exponential function

$$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots$$

$$e^{At} = E + \frac{1}{1!}At + \frac{1}{2!}(At)^2 + \frac{1}{3!}(At)^3 + \dots$$

check it out!

$$\frac{d}{dt}(e^{At}) = ?$$

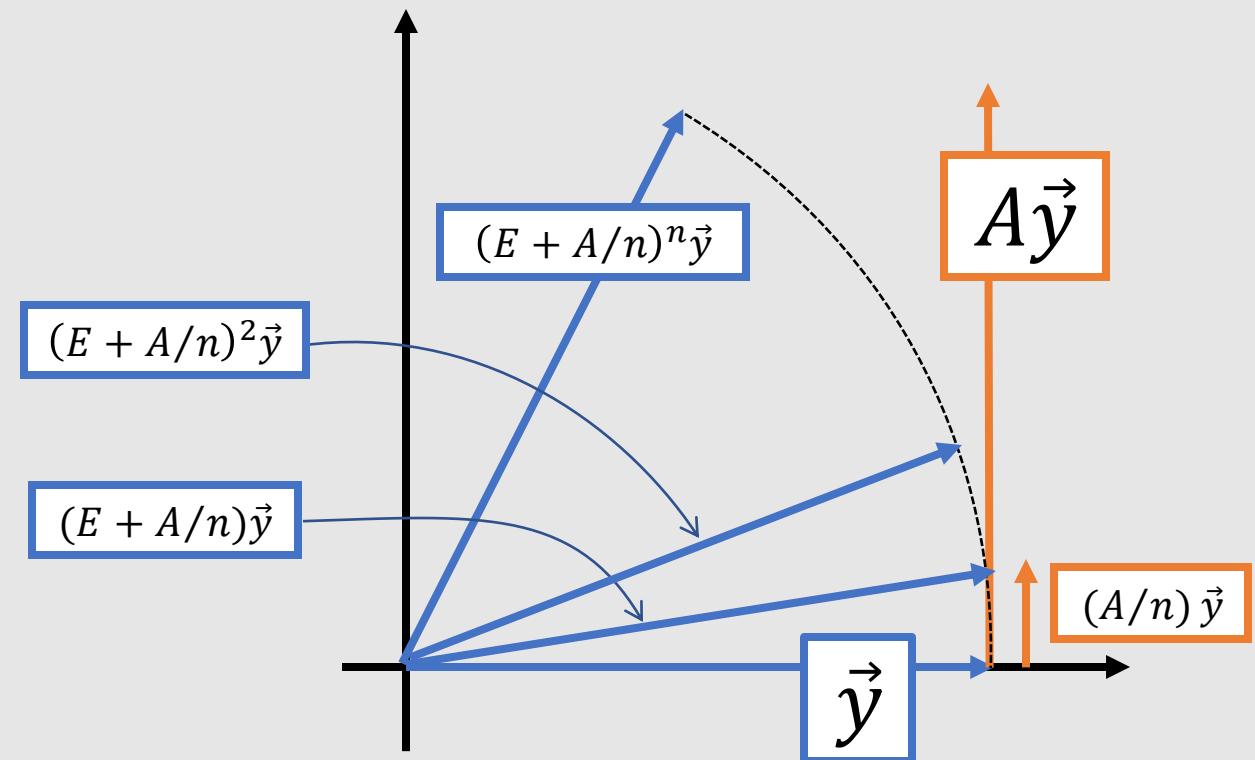
Geometrical Interpretation

- Let's go back to the definition of the exponential

$$e^x = \lim_{n \rightarrow \infty} \left(1 + \frac{x}{n}\right)^n \quad \xrightarrow{\text{multi-variable}} \quad e^A = \lim_{n \rightarrow \infty} \left(E + \frac{A}{n}\right)^n$$

For example, let A is a matrix to compute tangent in 2D

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$



Compound Interest(複利効果)

\$1 $\xrightarrow[12 \text{ months}]{100\%}$ \$2

\$1 $\xrightarrow[6 \text{ months}]{50\%}$ \$1.5 $\xrightarrow[6 \text{ months}]{50\%}$ \$2.25

\$1 $\xrightarrow[3 \text{ months}]{25\%}$ \$1.25 $\xrightarrow[3 \text{ months}]{25\%}$ \$1.5625 $\xrightarrow[3 \text{ months}]{25\%}$ \$1.95 $\xrightarrow[3 \text{ months}]{25\%}$ \$2.4375

\$1 $\xrightarrow[1 \text{ day}]{1/365\%}$ \$..... $\xrightarrow[1 \text{ day}]{1/365\%}$ \$..... \rightarrow \$2.714..

\$1 \rightarrow \$..... \rightarrow \$..... \rightarrow \$..... \rightarrow \$e(2.718..)

$$e = \lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^n$$

Wealth is Exponential

Compound interest is the 8th wonder of the world. He who understands it, earns it; he who doesn't, pays it.

-Albert Einstein

$r > g$

(i.e., you can earn more from investment than working hard)

Thomas Piketty, Capital in the Twenty-First Century

(Wikipedia)

Diagonalization and Matrix Exponential

eigen decomposition

$$A\mathbf{v}_i = \lambda_i \mathbf{v}_i \quad \longrightarrow \quad A = V\Lambda V^{-1}$$

$$e^{At} = E + \frac{1}{1!}At + \frac{1}{2!}(At)^2 + \frac{1}{3!}(At)^3 + \dots$$

check it out!

System of 2nd Order Differential Equation

- 2nd order system can be transformed into a 1st order system

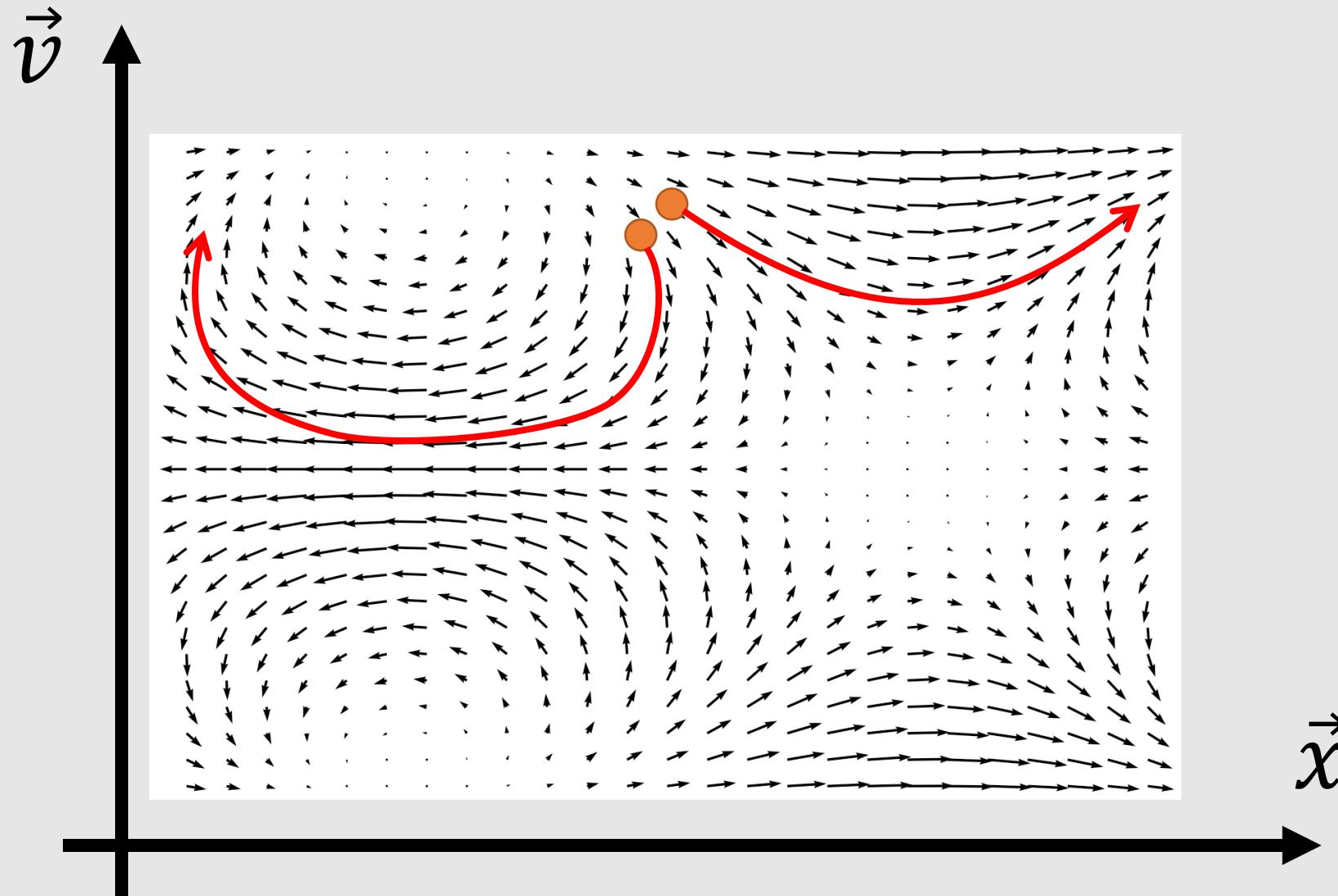
$$\frac{d^2\vec{x}}{dt^2} - A \frac{d\vec{x}}{dt} - B\vec{x} = 0$$

$$\vec{v} = \frac{d\vec{x}}{dt}$$

$$\frac{d}{dt} \begin{pmatrix} \vec{v} \\ \vec{x} \end{pmatrix} = \begin{bmatrix} A & B \\ E & 0 \end{bmatrix} \begin{pmatrix} \vec{v} \\ \vec{x} \end{pmatrix}$$

Analyzing stability of this system requires **Laplace transformation**, which is beyond the scope of this lecture

Mechanics: Trajectory in Phase Space

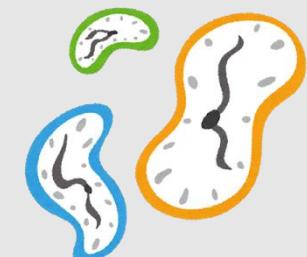


Discrete Time Integration

Why Temporal Discretization?

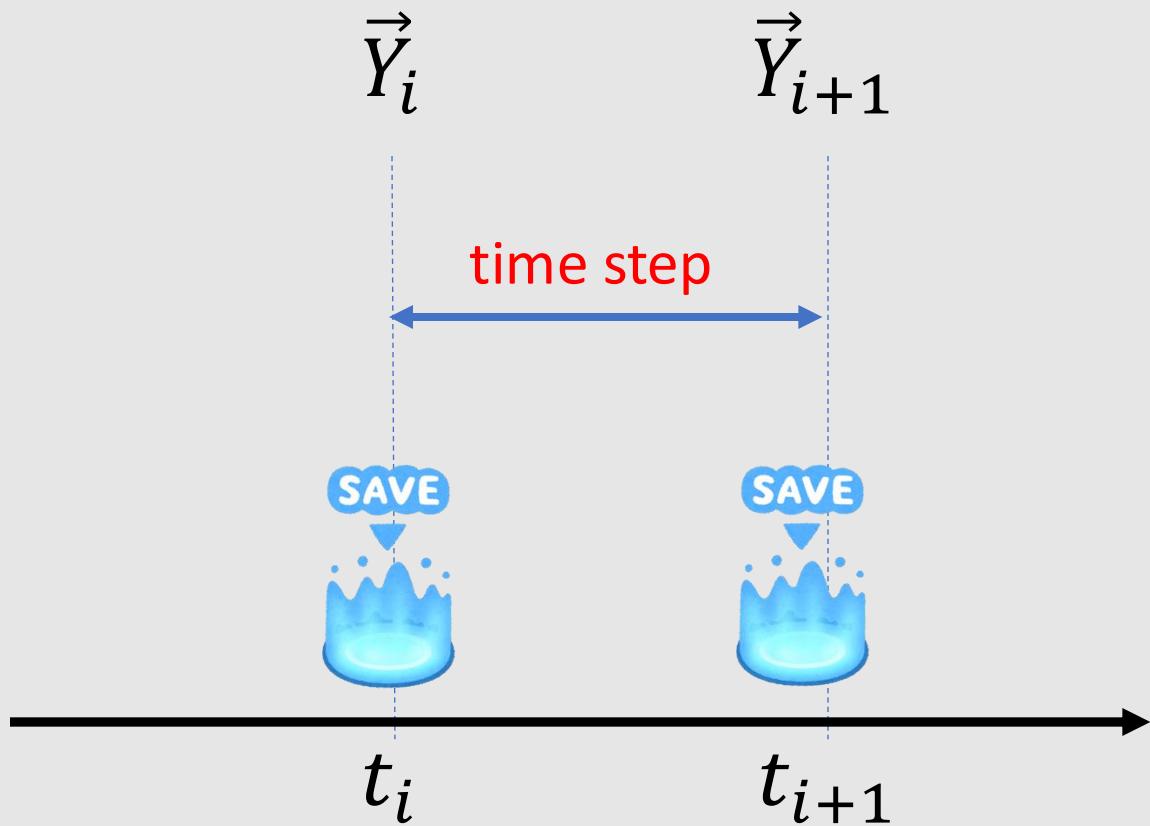
- Dynamic system doesn't always have an analytical solution

- Computer cannot handle continuous value
 - Similar to “quantization” and “sampling” in audio processing



Time Integration for Temporal Discretization

- The interval is called “**time step**”



Recurrent formula

$$\vec{Y}_{i+1} = F(\vec{Y}_i)$$

Given equation of motion,
what are the \vec{Y}_i and $F()$?

Approximating Gradient by Difference

$$\frac{dx}{dt} = F(x)$$

forward(explicit)
Euler method

$$\frac{x_{i+1} - x_i}{dt} = F(x_i)$$

Simple but
Unstable

backward(implicit)
Euler method

$$\frac{x_{i+1} - x_i}{dt} = F(x_{i+1})$$

Complicated but
Stable

Recurrence Relation from Backward Euler

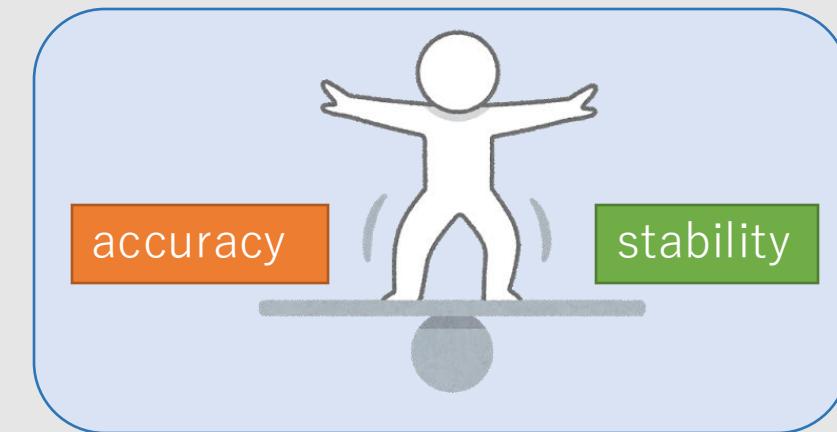
$$\frac{x_{i+1} - x_i}{dt} = F(x_{i+1})$$

Taylor's expansion

$$\cong f(x_i) + \left. \frac{dF}{dx} \right|_{x_i} (x_{i+1} - x_i)$$

(write equation Here)

Accuracy of Time Integration



Forward(explicit)
Euler method

$$\frac{x_{i+1} - x_i}{dt} = F(\mathbf{x}_i)$$

1st order

Average

Crank-Nicolson method

$$\frac{x_{i+1} - x_i}{dt} = \frac{F(\mathbf{x}_i) + F(\mathbf{x}_{i+1})}{2}$$

2nd order

Backward (implicit)
Euler method

$$\frac{x_{i+1} - x_i}{dt} = F(\mathbf{x}_{i+1})$$

1st order

2nd-order Differential Eqn. by Backward Euler

Backward
Euler method

$$\frac{ds}{dt} = \frac{s_{i+1} - s_i}{dt} = F(s_{i+1})$$

plug in $s_i = \begin{pmatrix} \vec{v}_i \\ \vec{x}_i \end{pmatrix}$

(write equations here)

Simple Example: Particle Under Gravity

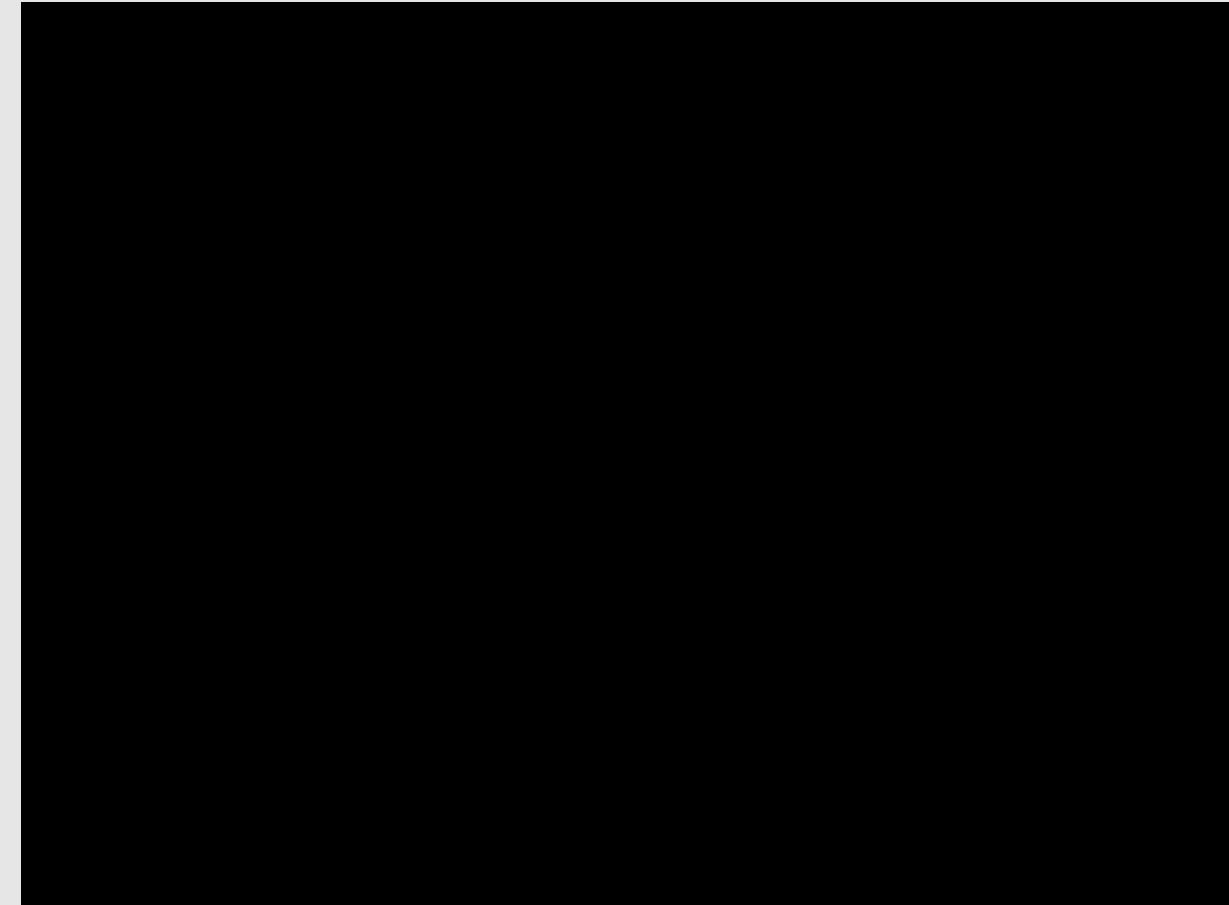
$$m\vec{a} = m\vec{g} \quad \xrightarrow{\hspace{1cm}} \quad \begin{cases} \vec{v}_{i+1} - \vec{v}_i = dt \cdot \vec{a}_{i+1} \\ \vec{x}_{i+1} - \vec{x}_i = dt \cdot \vec{v}_{i+1} \end{cases}$$

$$\vec{a} = \vec{g}$$

$$\boxed{\begin{aligned} \vec{v}_{i+1} &= \vec{v}_i + dt \cdot \vec{g} \\ \vec{x}_{i+1} &= \vec{x}_i + dt \cdot (\vec{v}_i + dt \cdot \vec{g}) \end{aligned}}$$

Karl Sim's Particle Dreams, 1988

<https://www.karlsims.com/particle-dreams.html>

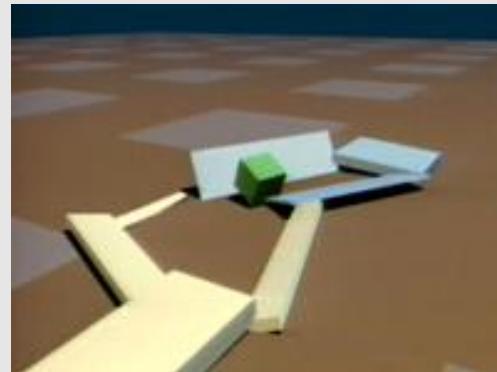
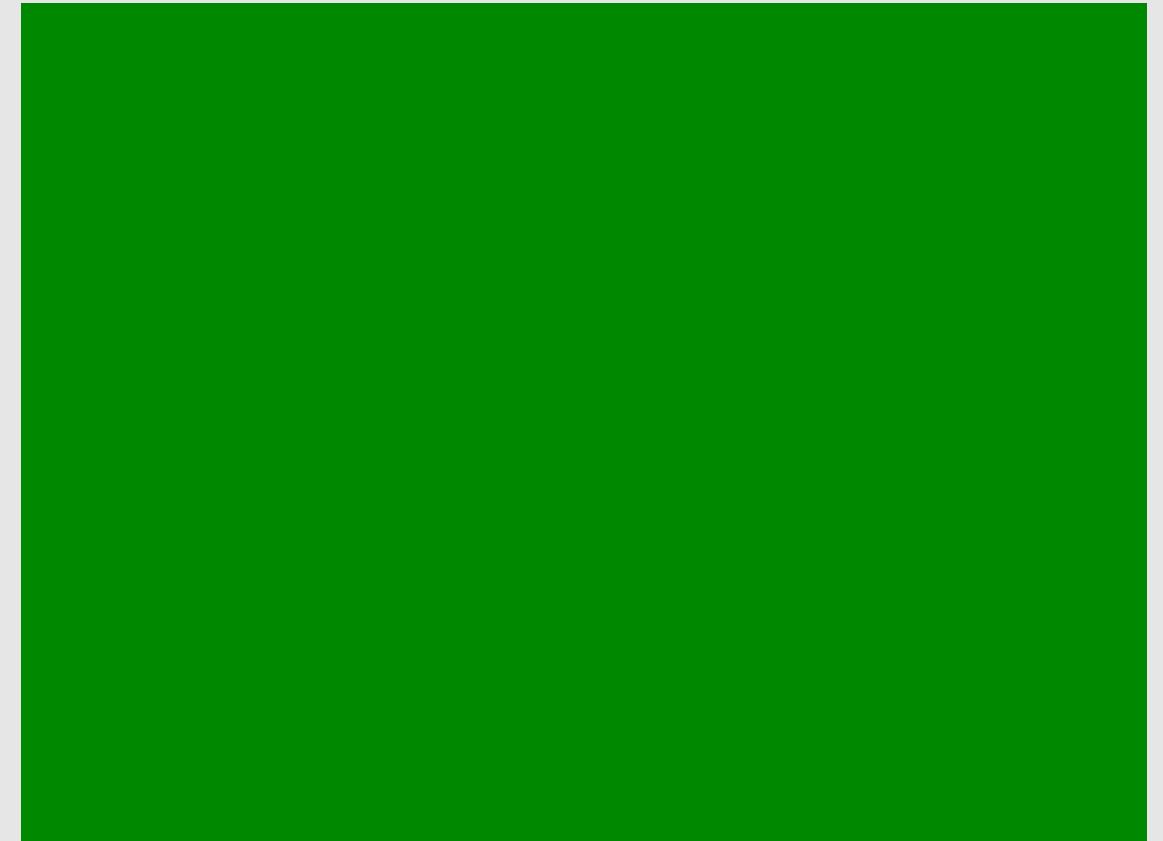


<https://www.youtube.com/watch?v=5QEp-oPaQto>

Karl Sim's Another Awesome Work

K.Sims, "Evolved Virtual Creatures ", Siggraph '94

<https://www.karlsims.com/evolved-virtual-creatures.html>



<https://www.youtube.com/watch?v=RZtZia4ZkX8>

Advanced Topics

- Runge-Kutta method
- Variational Implicit Euler Method
- Symplectic Integrator
- Lie group integrator

End

Time Integration

Recurrence formula from
equation of motion

Position

Velocity

Acceleration

$$\vec{x}$$

$$\vec{v}$$

$$\vec{a}$$

Integration

Integration

Eqn. of motion

$$\vec{a} = \frac{1}{m} \vec{F}$$

Time Integration: 1st-order Differential Eqn.

- Given \vec{x}_i , solve for \vec{x}_{i+1}

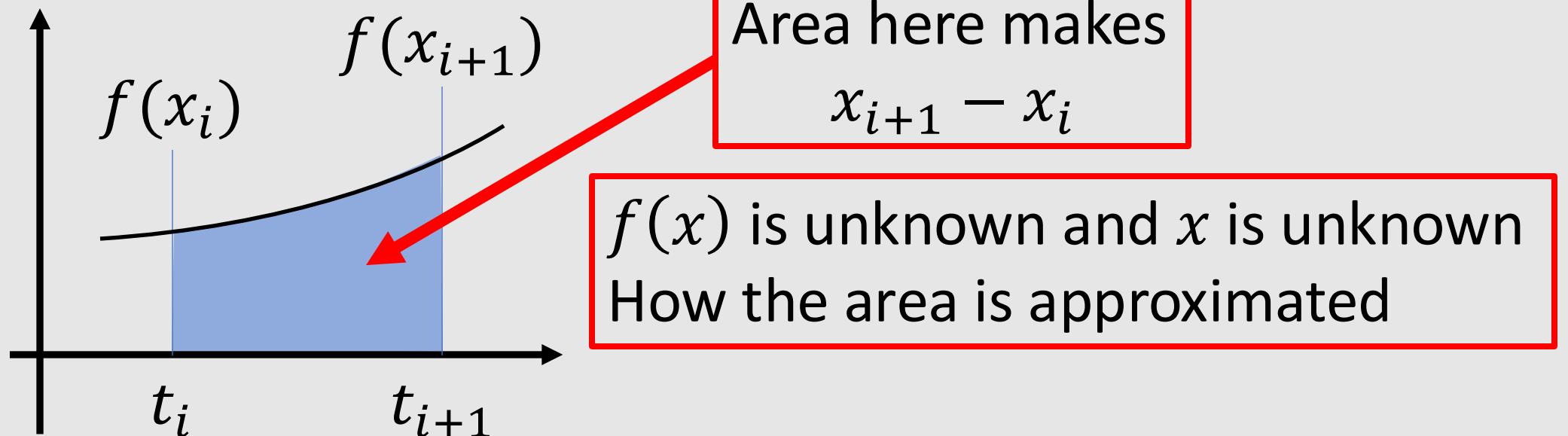
$$\frac{dx}{dt} = f(x) \quad \xrightarrow{\text{Integration}} \quad x_{i+1} = x_i + \int_{t_i}^{t_{i+1}} f(x) dt$$

(ここに手書きで式を書く)

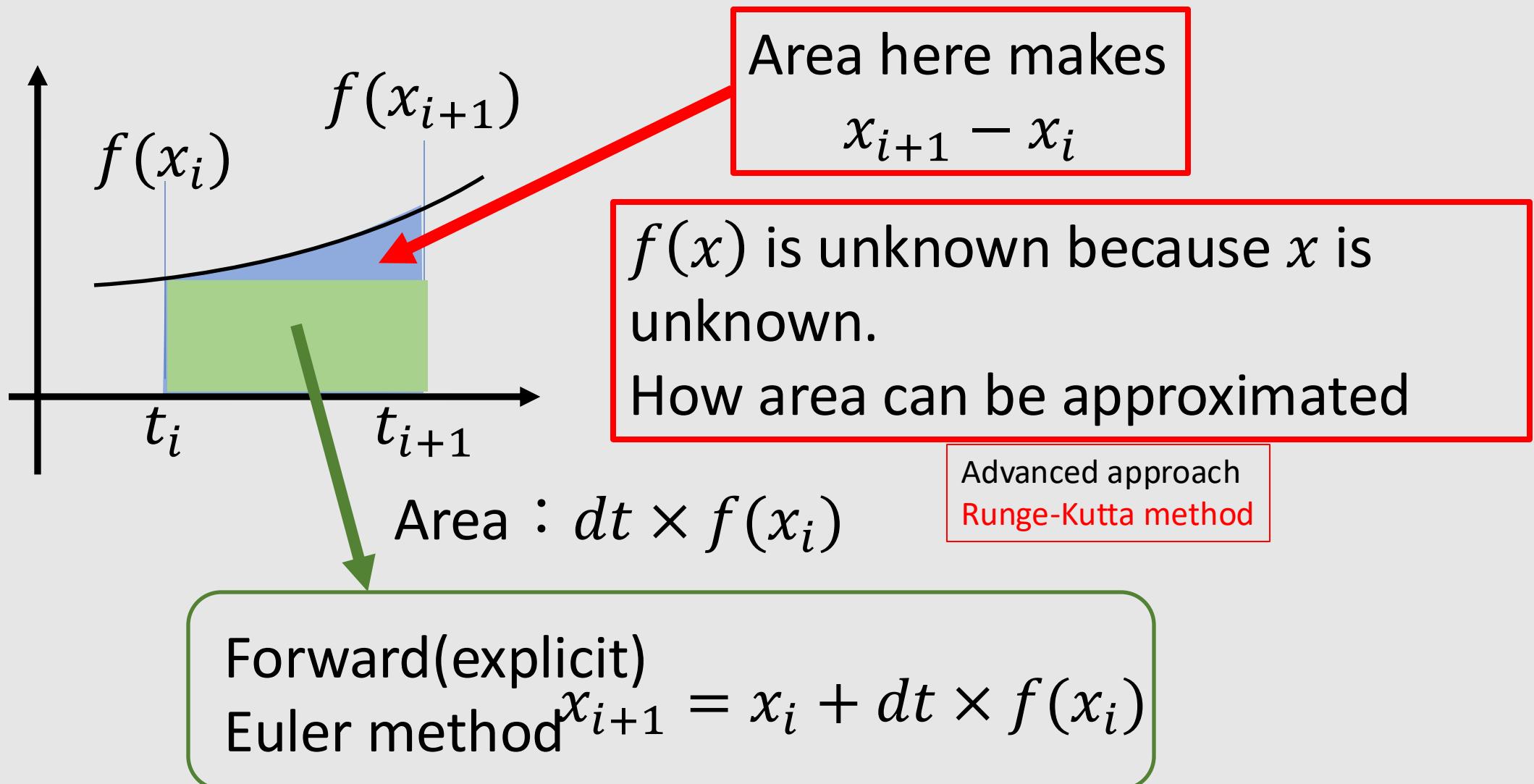
Time Integration: 1st-order Differential Eqn.

- Compute \vec{x}_{i+1} when \vec{x}_i is given

$$\frac{dx}{dt} = f(x) \xrightarrow{\text{integration}} x_{i+1} = x_i + \int_{t_i}^{t_{i+1}} f(x) dt$$

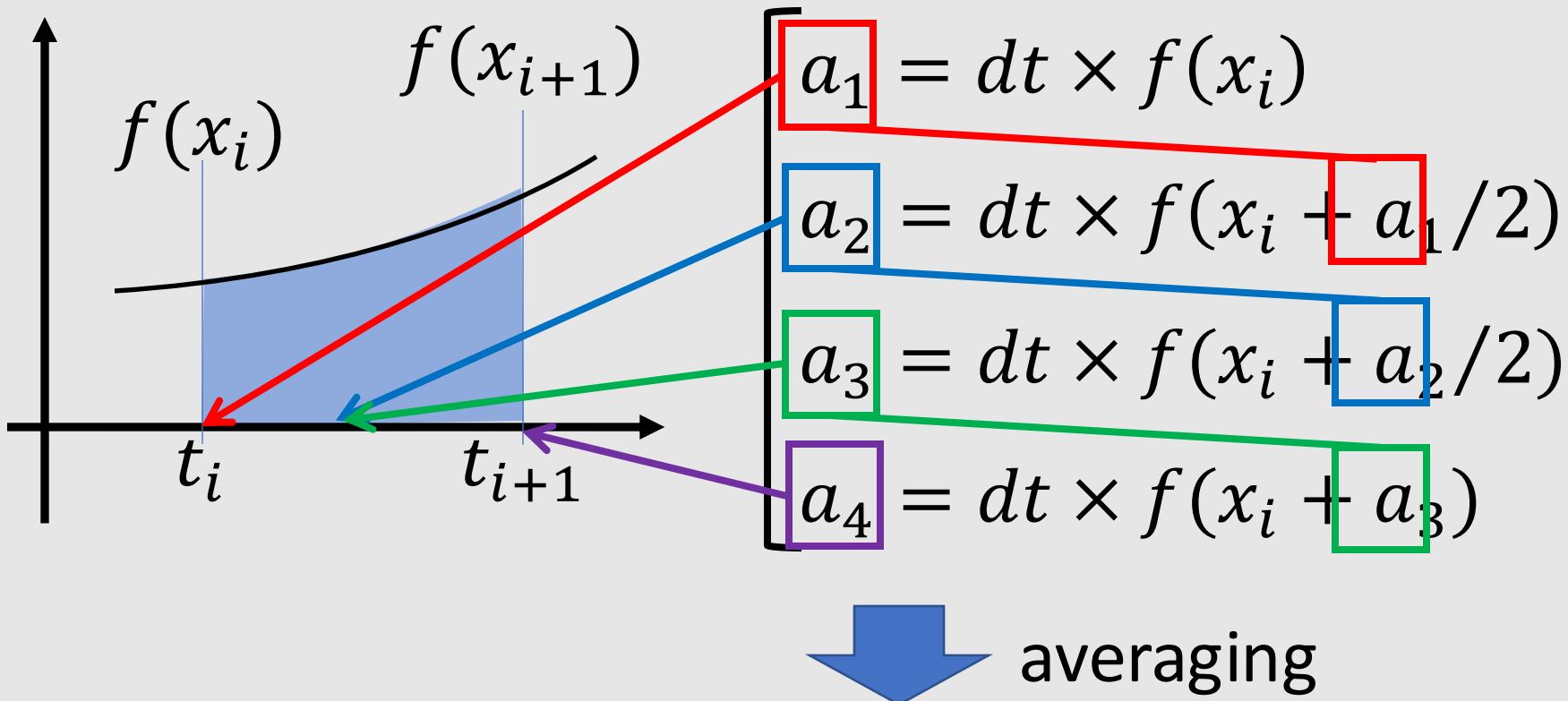


Time Integration: 1st-order Differential Eqn.



Runge-Kutta Method (4th order)

- Approximating are $a = x_{i+1} - x_i$ with 4 different ways



$$x_{i+1} = x_i + \frac{1}{6} (a_1 + 2a_2 + 2a_3 + a_4)$$