

Einstein's Summation Rule

- Repeated indices are summed over

I have made a great discovery in mathematics!

inner product

$$a \cdot b = a_i b_i = \sum_i a_i b_i$$

Frobenius inner product

$$\langle A, B \rangle_F = A_{ij} B_{ij} = \sum_j \sum_i A_{ij} B_{ij}$$

Let's Practice Einstein's Summation Rule

$$tr(A) = ?$$

$$a_i b_i = ?$$

$$(A^T B)_{ij} = ?$$

$$a_{ii} a_{jj} = ?$$

$$tr(A^T B) = ?$$

$$a_{ii} a_{ii} = ?$$

$$(\vec{a}^T \vec{b} I)_{ij} = ?$$

Frobenius Inner Product $\langle A, B \rangle_F = A_{ij}B_{ij}$

$$A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n]$$

$$B = [\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n]$$

$$\langle A, B \rangle_F = \sum_i \vec{a}_i^T \vec{b}_i$$

$$\langle RA, B \rangle_F = R_{ik} A_{kj} B_{ij} = \sum_i (R \vec{a}_i)^T \vec{b}_i$$

$$= A_{kj} (R^T B)_{kj} = \langle A, R^T B \rangle_F = \sum_i \vec{a}_i^T R \vec{b}_i$$

$$= R_{ik} (B A^T)_{ik} = \langle R, B A^T \rangle_F = \left\langle R, \sum_i \vec{b}_i \otimes \vec{a}_i \right\rangle_F$$

Tensor

What is Tensor?

In mathematics, a tensor is an algebraic object that **describes a (multilinear) relationship** between sets of algebraic objects related to a vector space.

<https://en.wikipedia.org/wiki/Tensor>

scalar a

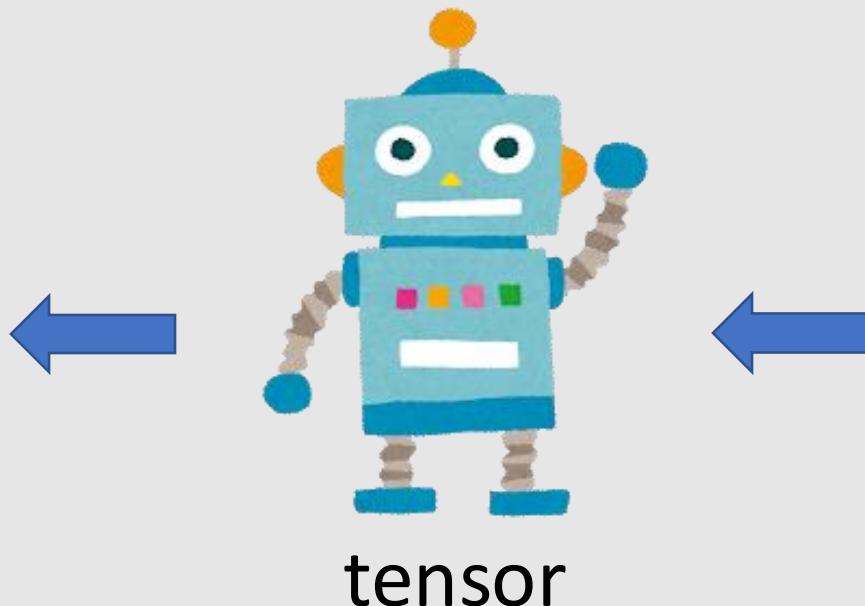
vector \vec{u}

tensor A

scalar b

vector \vec{v}

tensor B

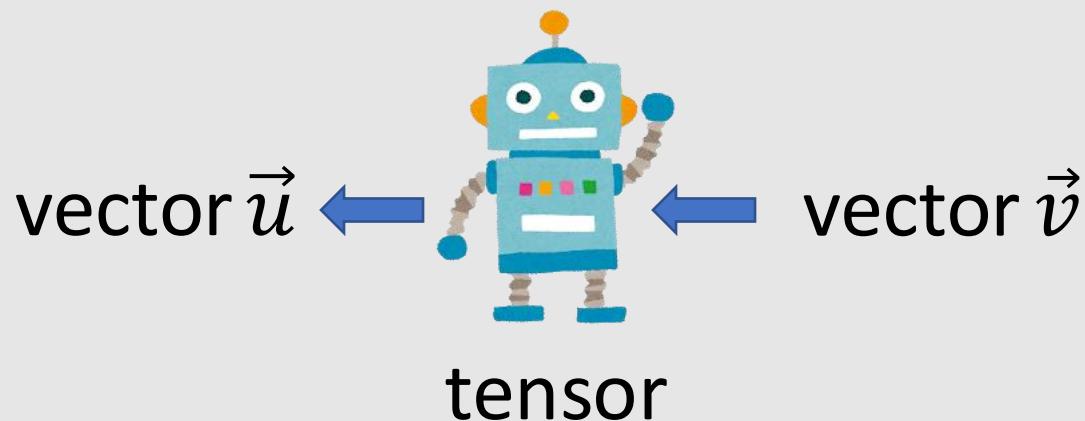


Two ways to Understand 2nd-order Tensor

- Transformation by a tensor is given by the inner product

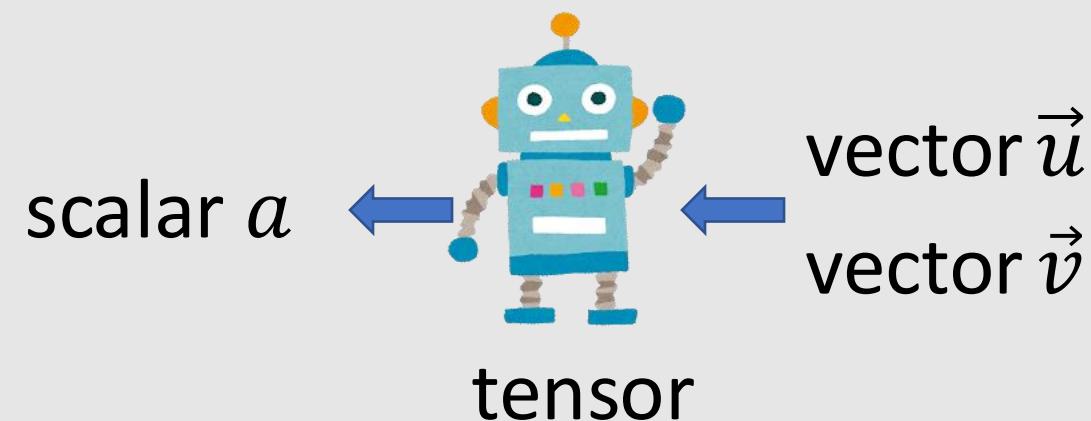
Linear form

$$\vec{u} = A \cdot \vec{v}$$



Quadratic form

$$a = \vec{u} \cdot (A \cdot \vec{v})$$



Outer Product (Tensor Product)

- Outer product makes a tensor from two vectors

$$\vec{a} \otimes \vec{b} \rightarrow (\vec{a} \otimes \vec{b}) \cdot \vec{u} = \vec{a}(\vec{b} \cdot \vec{u})$$

- Tensor product $\vec{e} \otimes \vec{e}$ ($\|e\| = 1$) defines **projection**

Definition

Projection \mathcal{P}

$$\mathcal{P}(\mathcal{P}(x)) = \mathcal{P}$$

check it out!

Outer Product (Tensor Product)

- Transformation for vectors in the outer product

check it out!

$$(A\vec{a}) \otimes (B\vec{b}) = ?$$

Definition

$$\vec{a} \otimes \vec{b} = (\vec{a} \otimes \vec{b}) \cdot \vec{u} = \vec{a}(\vec{b} \cdot \vec{u})$$

Tensor + Basis = Matrix

- Inner product with a basis vector gives a coefficient
 - This is true even if the basis is not orthonormal

$$v_i = \vec{v} \cdot \vec{e}_i$$

$$a_{ij} = \vec{e}_i \cdot (A \cdot \vec{e}_j)$$

Tensor & Matrix: Common Misunderstanding

Wrong idea! Correct your thought!

Tensor

=

Basis

✗

Matrix
(coefficients)

Nice ! Go ahead!

Tensor

✗

Basis

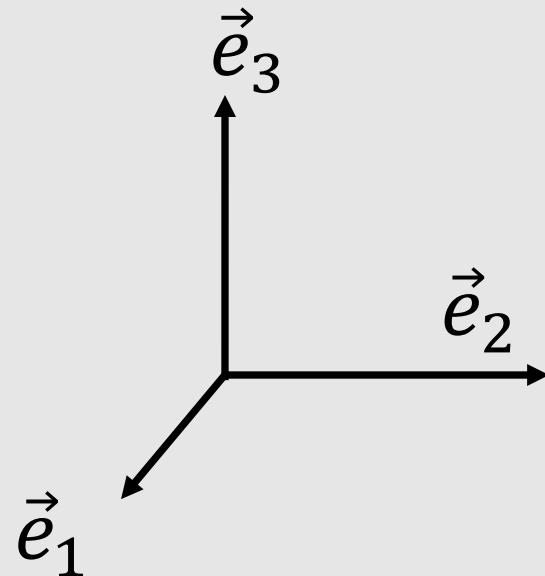
=

Matrix
(coefficients)

Orthonormal Coordinates

- Tensor can be written with bases and coefficients

$$e_i \cdot e_j = \delta_{ij}$$



$$v_i = \vec{v} \cdot \vec{e}_i$$

$$\rightarrow \vec{v} = v_i \vec{e}_i$$

$$a_{ij} = \vec{e}_i \cdot (A \cdot \vec{e}_j)$$

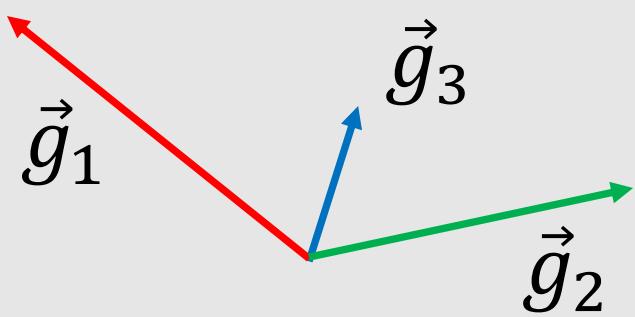
$$\rightarrow A = a_{ij} \vec{e}_i \otimes \vec{e}_j$$

check it out!

Curvilinear Coordinates

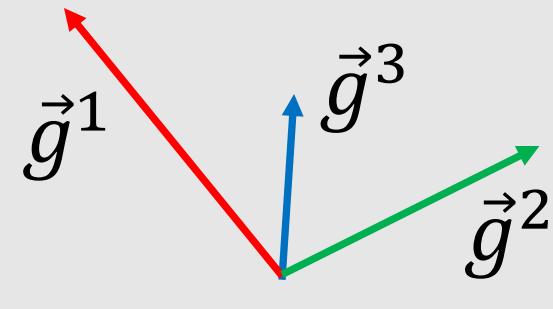
- Non-orthogonal and un-normalized bases
- Dual bases solve the problem

$$\vec{g}_i \cdot \vec{g}_j \neq \delta_{ij}$$



dual basis

$$\vec{g}_i \cdot \vec{g}^j = \delta_i^j$$



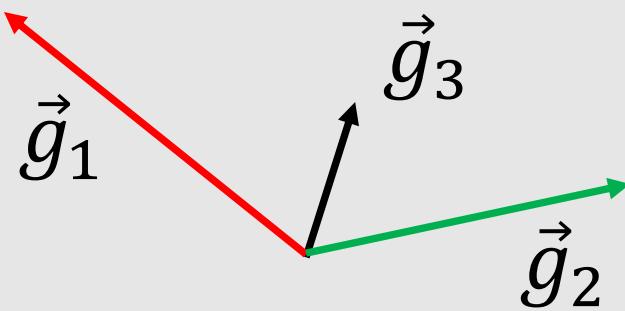
$$\vec{g}^1 = \frac{\vec{g}_2 \times \vec{g}_3}{\vec{g}_2 \cdot (\vec{g}_2 \times \vec{g}_3)}$$

$$\vec{g}^2 = \frac{\vec{g}_3 \times \vec{g}_1}{\vec{g}_3 \cdot (\vec{g}_3 \times \vec{g}_1)}$$

$$\vec{g}^3 = \frac{\vec{g}_1 \times \vec{g}_2}{\vec{g}_1 \cdot (\vec{g}_1 \times \vec{g}_2)}$$

Curvilinear Coordinates

- Expression of a vector in curvilinear coordinates

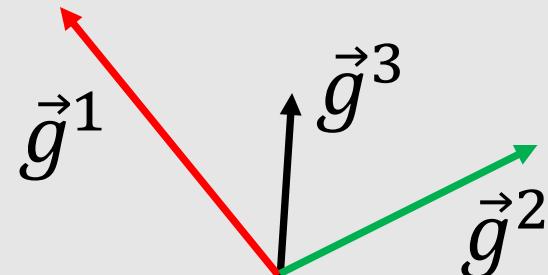


dual basis

$$g_i \cdot g^j = \delta_i^j$$

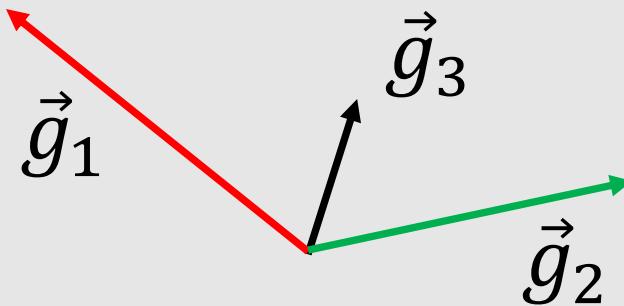
$$v^i = \vec{v} \cdot \vec{g}^i \quad \xrightarrow{\text{blue arrow}} \quad \vec{v} = v^i \vec{g}_i$$

$$v_i = \vec{v} \cdot \vec{g}_i \quad \xrightarrow{\text{blue arrow}} \quad \vec{v} = v_i \vec{g}^i$$



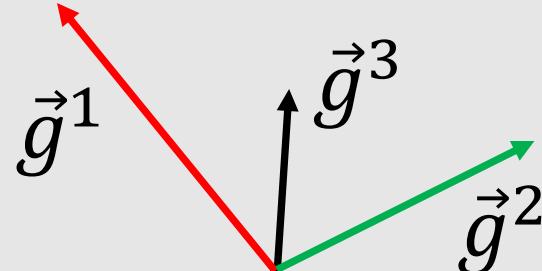
Curvilinear Coordinates

- Expression of a tensor in curvilinear coordinates



dual basis

$$g_i \cdot g^j = \delta_i^j$$



$$a^{ij} = \vec{g}^i \cdot (A \cdot \vec{g}^j) \rightarrow A = a^{ij} \vec{g}_i \otimes \vec{g}_j$$

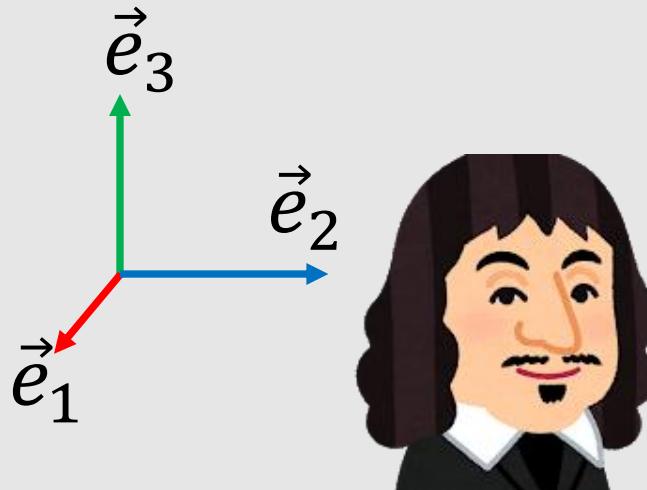
$$a_{ij} = \vec{g}_i \cdot (A \cdot \vec{g}_j) \rightarrow A = a_{ij} \vec{g}^i \otimes \vec{g}^j$$

$$a^i_j = \vec{g}^i \cdot (A \cdot \vec{g}_j) \rightarrow A = a^i_j \vec{g}_i \otimes \vec{g}^j$$

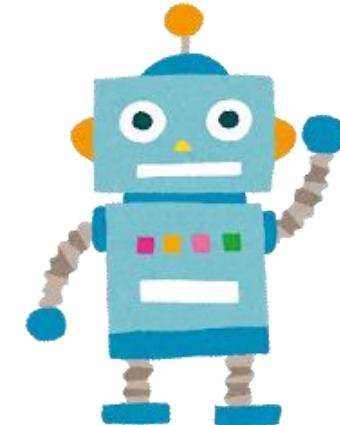
$$a_i^j = \vec{g}_i \cdot (A \cdot \vec{g}^j) \rightarrow A = a_i^j \vec{g}^i \otimes \vec{g}_j$$

Coordinate Transformation

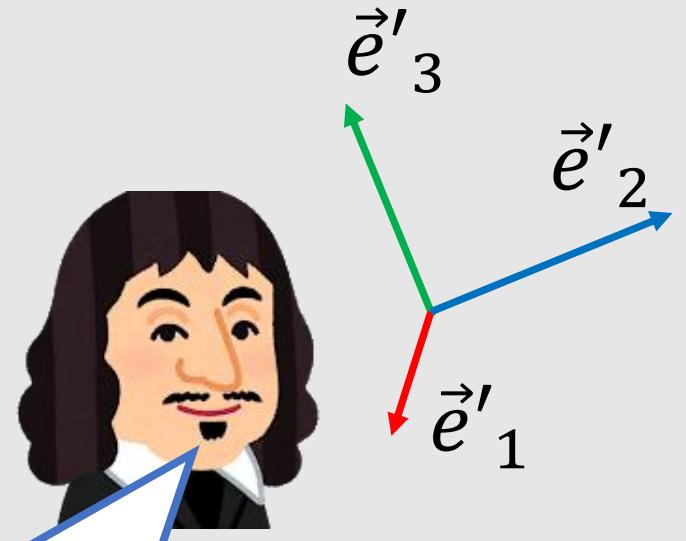
$$a_{ij} = \vec{e}_i \cdot (A \cdot \vec{e}_j)$$



tensor: A



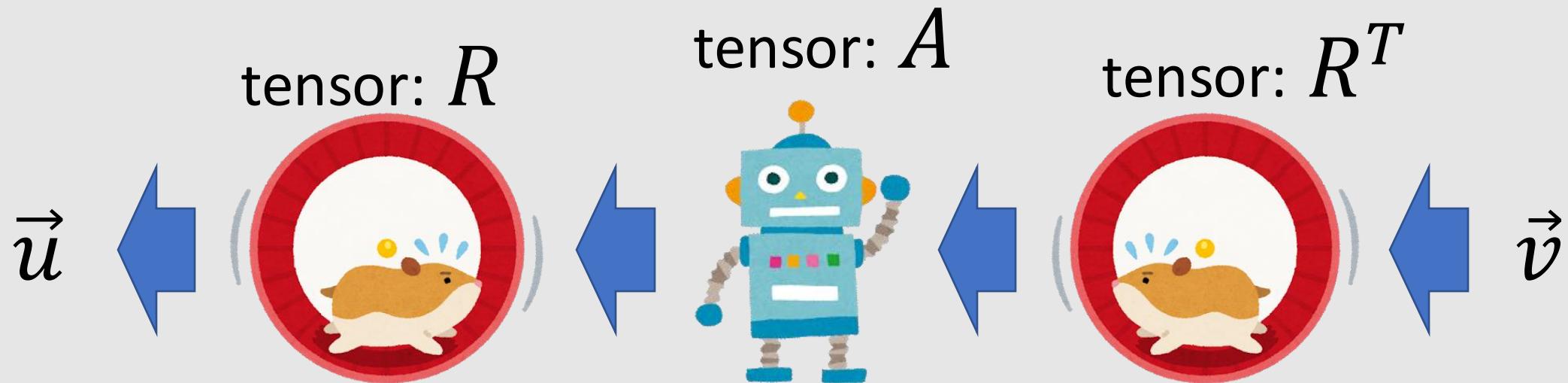
$$a'_{ij} = \vec{e}'_i \cdot (A \cdot \vec{e}'_j)$$



same tensor, different
(coefficient) matrix!

Rotation of a Tensor

- Un-rotating input and rotating output



$$\vec{u} = R A R^T \vec{v}$$

Rotation of a Tensor

- Rotating bases while using the same coefficients

$$A = a_{ij} \vec{e}_i \otimes \vec{e}_j$$

rotation of basis

$$\begin{aligned} A' &= a_{ij} (R \vec{e}_i) \otimes (R \vec{e}_j) \\ &= a_{ij} R (\vec{e}_i \otimes \vec{e}_j) R^T \\ &= R (a_{ij} \vec{e}_i \otimes \vec{e}_j) R^T \\ &= R A R^T \end{aligned}$$

check it out!

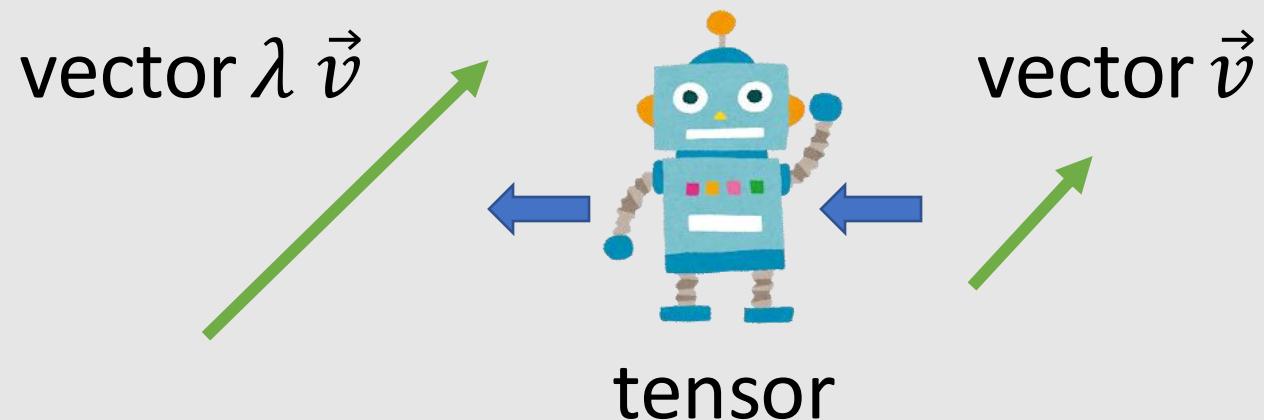
Simple Elastic Potential Energy for Continuum

Eigenvalue of Symmetric Tensor

- Eigenvalue of tensor is defined without matrix & coordinate

Linear form

$$\lambda \vec{v} = A \cdot \vec{v}$$



Eigenvalues and Frobenius Norm

from characteristic equation

$$\text{tr}(A) = \lambda_1 + \lambda_2 + \lambda_3$$

$$A^2 \vec{e} = \lambda^2 \vec{e}$$

$$\text{tr}(A^2) = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$$

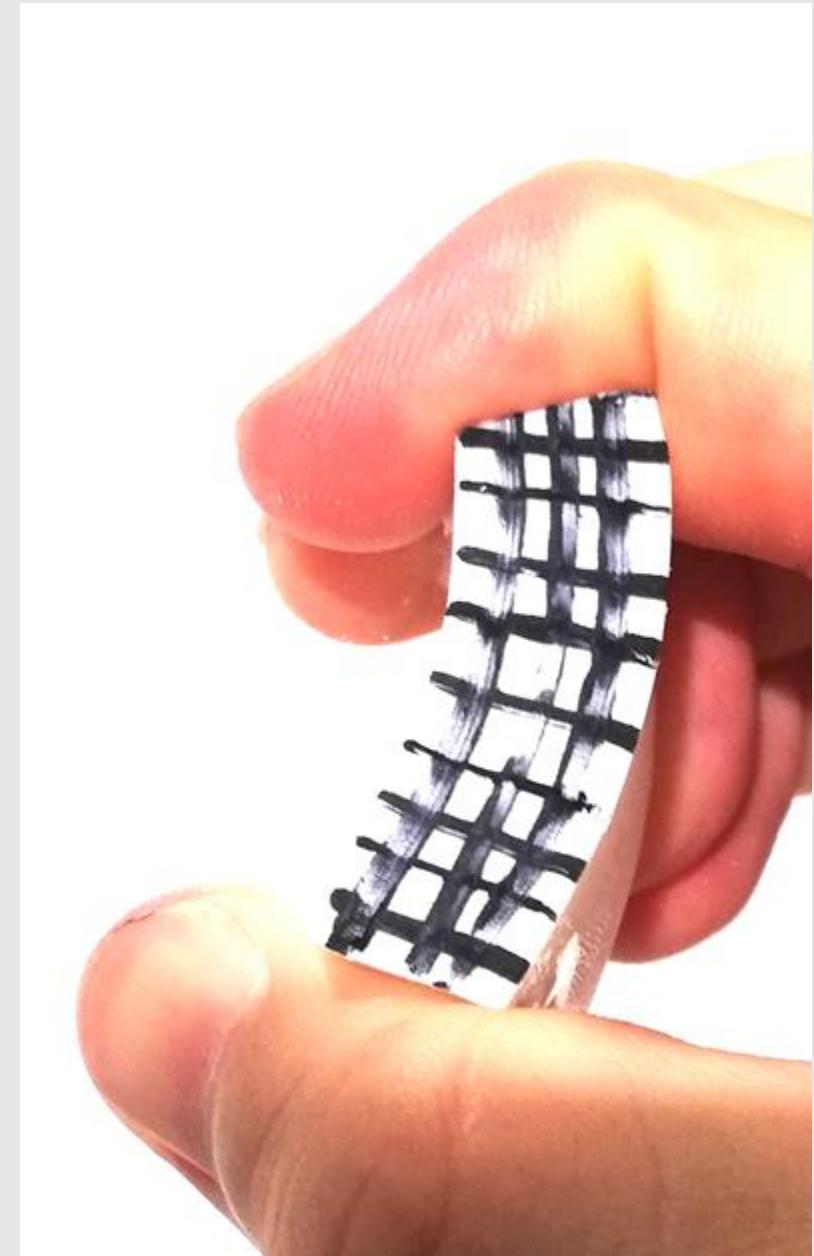
$$= \text{tr}(A^T A) = \sum_{1 \leq i, j \leq 3} a_{ij}^2 = \|A\|_F^2$$

Frobenius norm

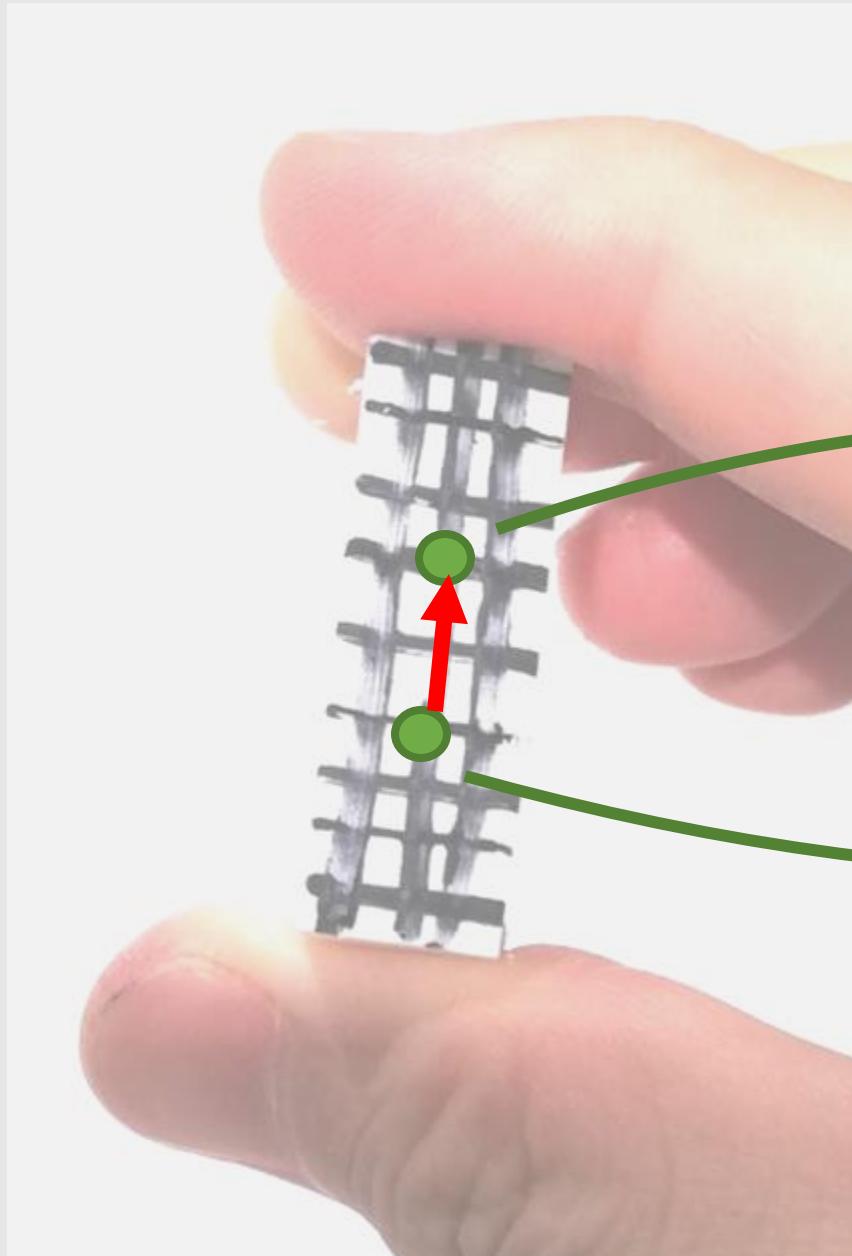
rest shape



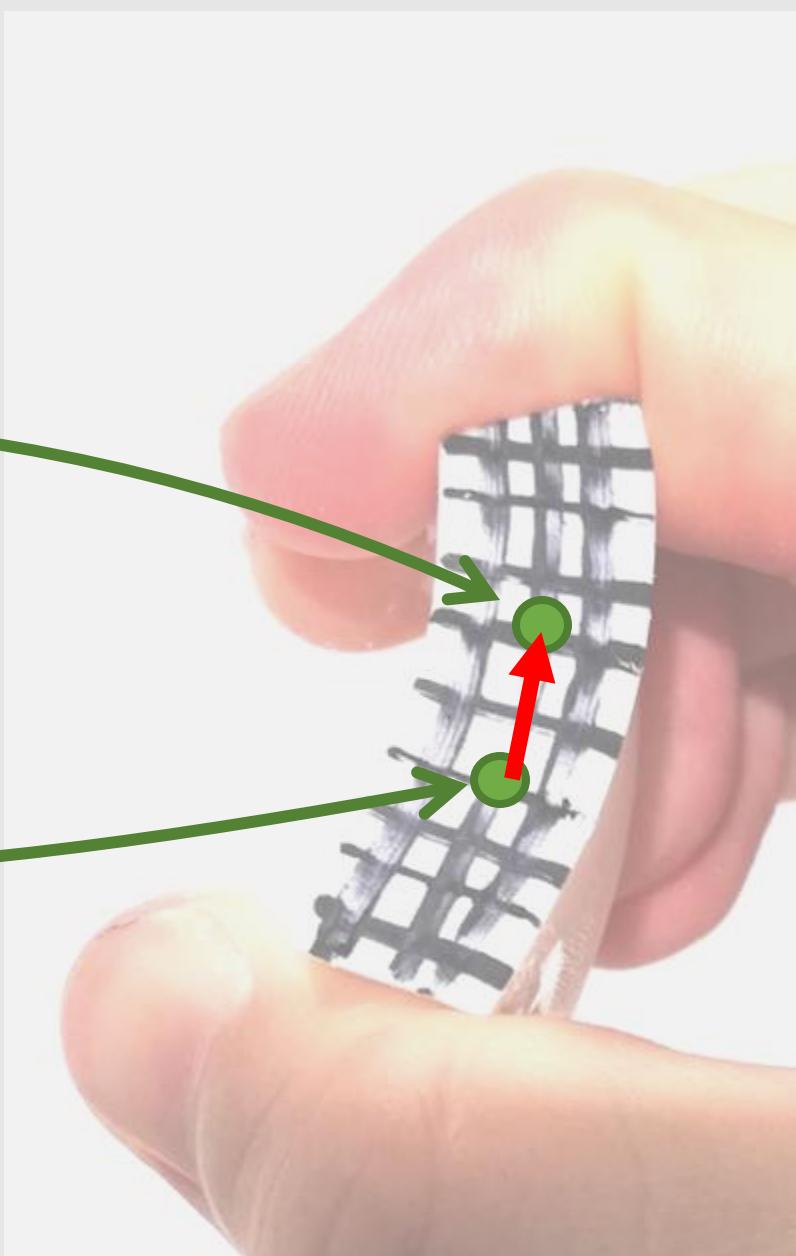
deformed shape



rest shape



deformed shape



rest shape

deformed shape

F : deformation gradient tensor

$$F = \partial \vec{x} / \partial \vec{X}$$

$$d\vec{X}$$

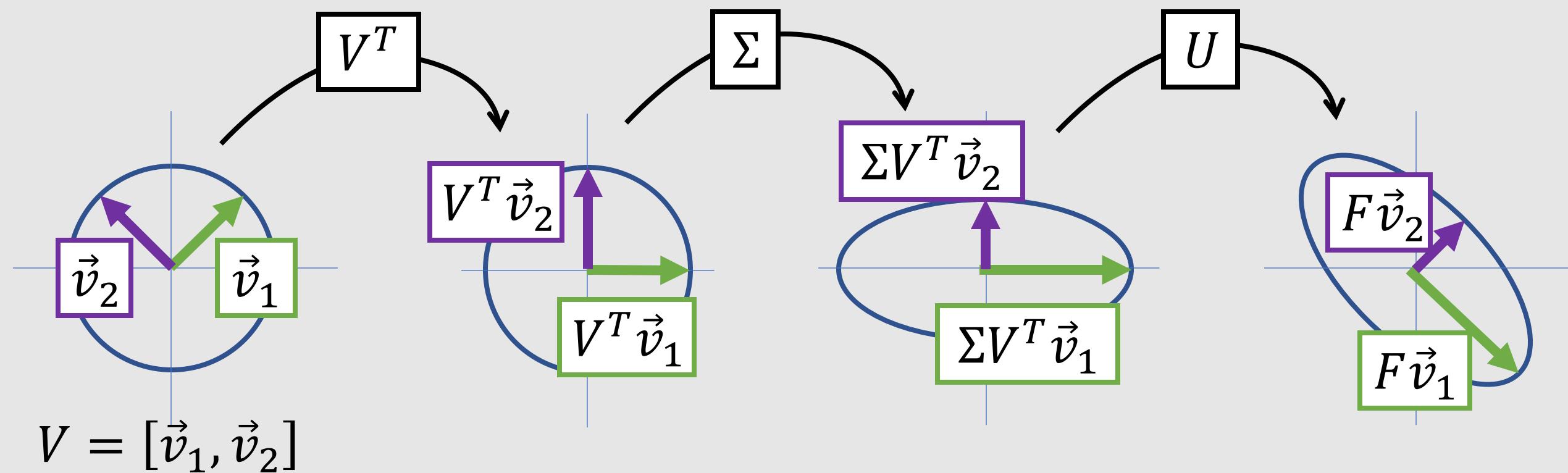
linear form

$$d\vec{x} = F d\vec{X}$$

SVD of Deformation Gradient Tensor

$$F = U\Sigma V^T$$

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \sigma_3 \end{bmatrix}$$



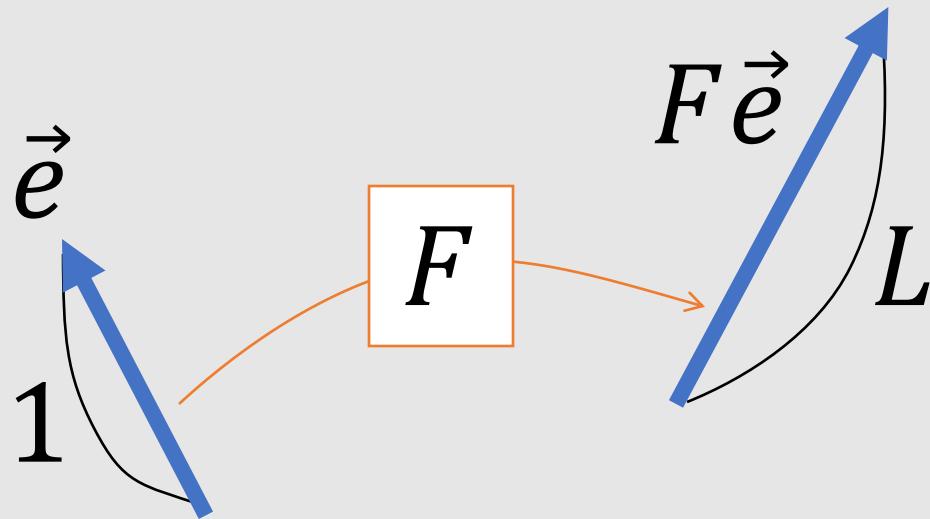
SVD of Deformation Gradient Tensor

$$F = U\Sigma V^T \quad \Sigma = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \sigma_3 \end{bmatrix}$$

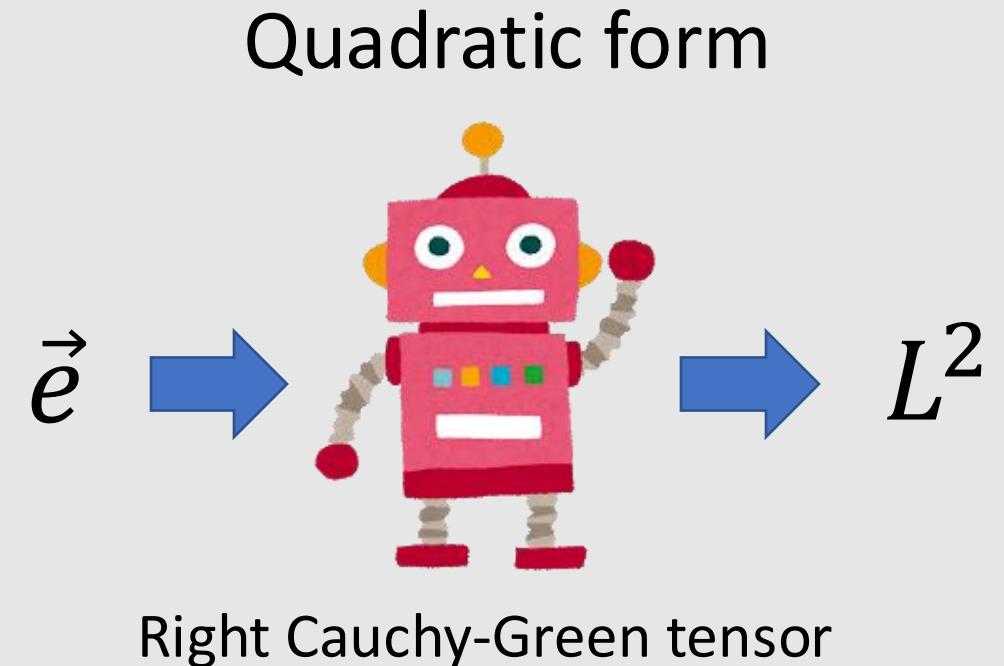
- Σ is the value we want for energy
- but SVD is costly
- How can we obtain Σ without SVD?

Gram Matrix $F^T F$ Stands for Length Change

- $C = F^T F$: right Cauchy-Green tensor

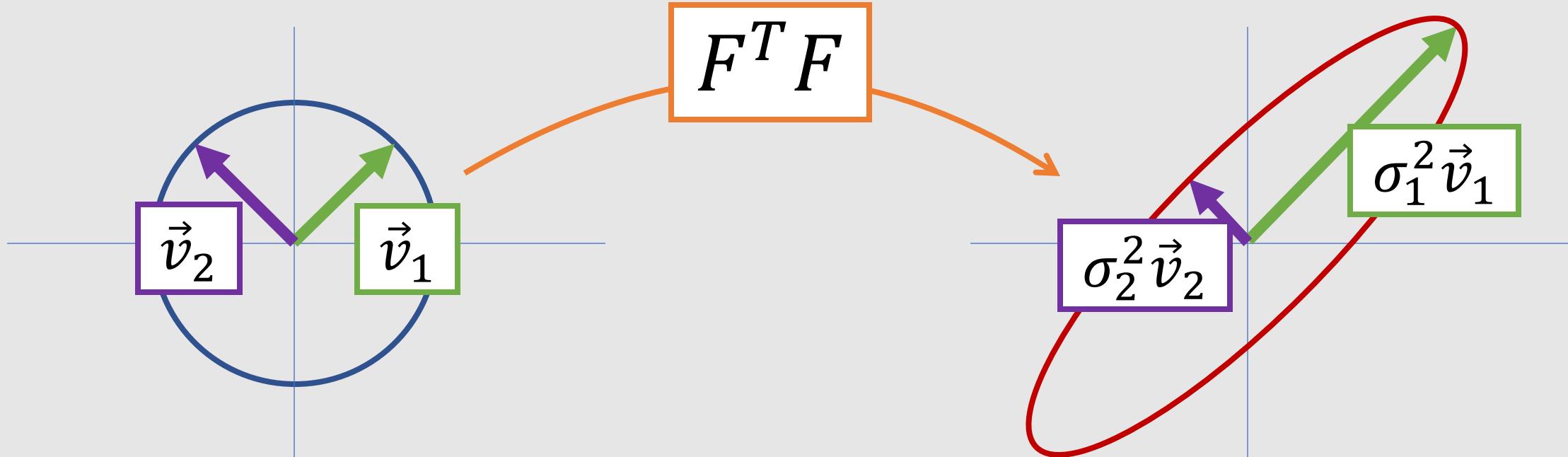


$$L^2(\vec{e}) = \vec{e}^T F^T F \vec{e}$$



Eigenvalue: Right Cauchy Green Tensor $F^T F$

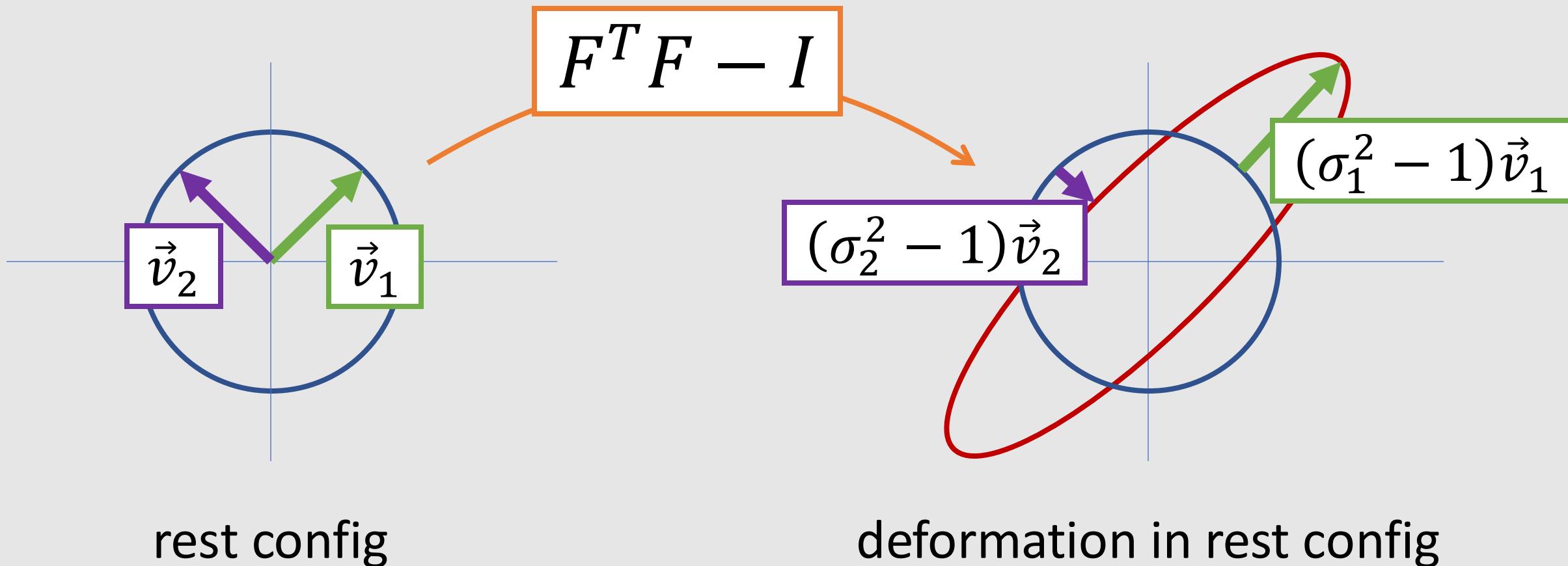
- Right Cauchy Green tensor is **symmetric** $F^T F = V \Sigma^2 V^T$
- Eigenvalues of $F^T F$ is **squared of singular values** : $\sigma_1^2, \sigma_2^2, \sigma_3^2$



rest config.

deformation in rest config.

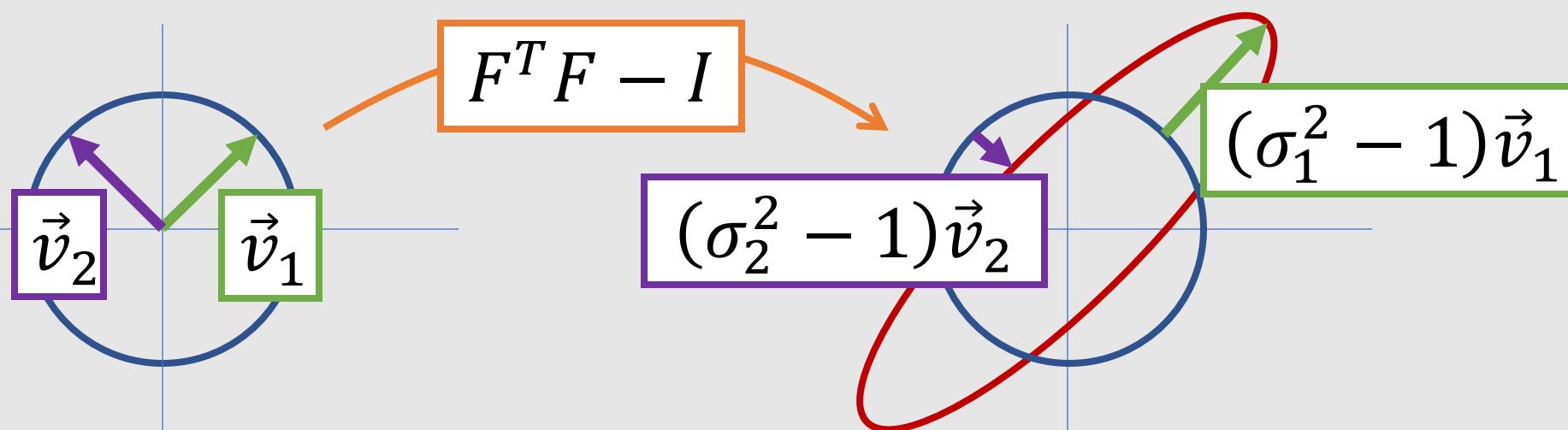
Eigenvalue: Green Lagrange Tensor $F^T F - I$



Making Energy from Eigenvalue

- Energy for isotropic material

$$W(F) = \|F^T F - I\|_F^2 = (\sigma_1^2 - 1)^2 + (\sigma_2^2 - 1)^2 + (\sigma_3^2 - 1)^2$$



Let's put penalty on the absolute value of
 $(\sigma_1^2 - 1), (\sigma_2^2 - 1)$ and $(\sigma_3^2 - 1)$

How can We Formulate Elastic Energy?

Strategy A: Elastic energy W is a function of eigenvalues of Green-Lagrange strain $E = F^T F - I$

$$W = \|F^T F - I\|_F^2, \quad \text{where } F = \frac{\partial \vec{x}}{\partial \vec{X}}$$

cancel rotation *cancel translation*

Hard to choose!

Strategy B: Elastic energy W is a **sum of square distances** after **canceling rotation and translation**

$$W = \min_{R, \vec{t}} \sum_i \omega_i \|R \vec{X}_i + \vec{t} - \vec{x}_i\|^2$$

Making Energy from Eigenvalue

- Energy for isotropic material

$$W(F) = \|F^T F - I\|_F^2 = (\sigma_1^2 - 1)^2 + (\sigma_2^2 - 1)^2 + (\sigma_3^2 - 1)^2$$

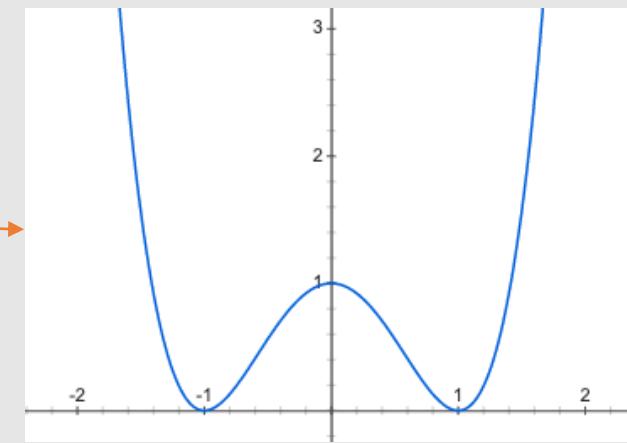
This energy doesn't have costly SVD and eigen decomposition **easy to compute gradient & hessian!**

Making Energy from Eigenvalue

$$W(F) = \|F^T F - I\|_F^2 = (\sigma_1^2 - 1)^2 + (\sigma_2^2 - 1)^2 + (\sigma_3^2 - 1)^2$$

Wait... $W(F) = 0$ is not always no deformation.
What about mirror reflection $\sigma_i = -1$?

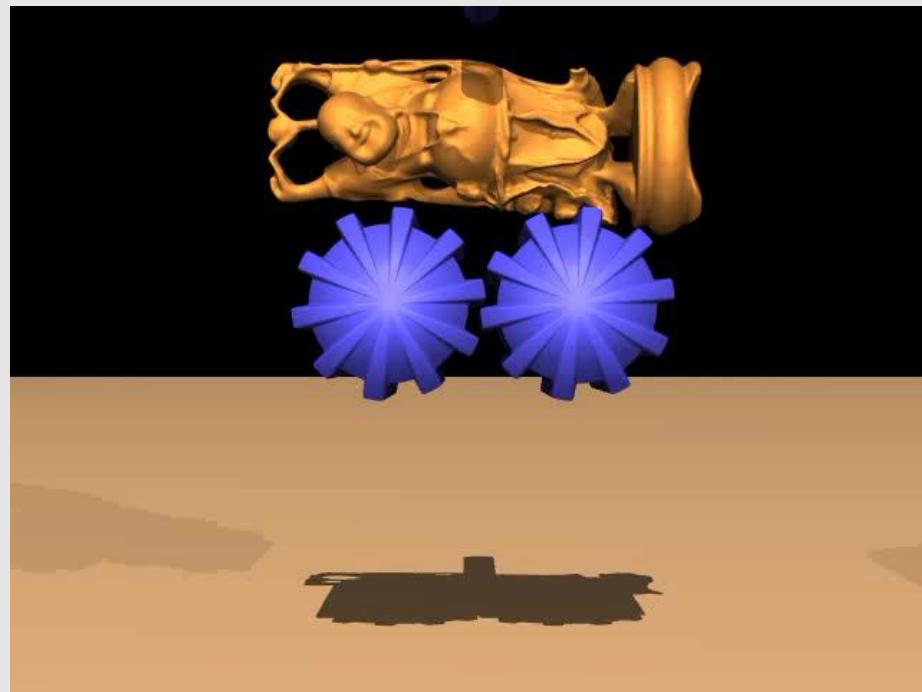
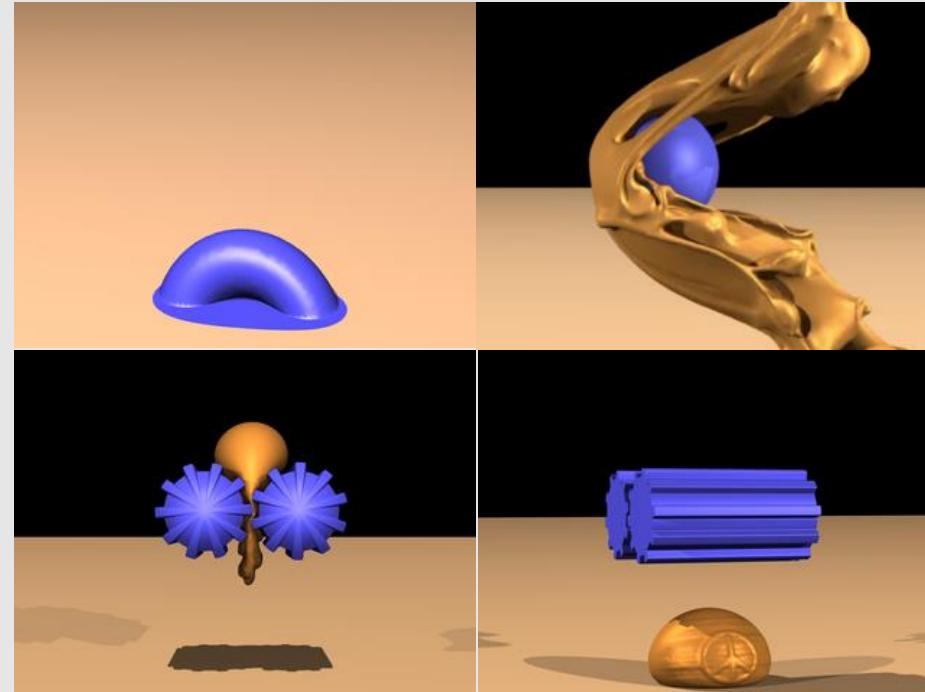
$$y = (x^2 - 1)^2$$



This energy is not robust to **inversion**

Invertible FEM [Irving et al. 2004]

- Elastic potential energy based on singular values of F that are σ_i , not on the eigen values of $F^T F$ that are σ_i^2



G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA '04)