Einstein’s Summation Rule

o | have made a great
* Repeated indices are summed over | giscovery in mathematics!
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Let’s Practice Einstein’s Summation Rule
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Frobenius Inner Product (A4, B)r = A;;B;;
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Tensor



What is Tensor?

In mathematics, a tensor is an algebraic
object that describes a (multilinear)
relationship between sets of algebraic

objects related to a vector space.
https://en.wikipedia.org/wiki/Tensor
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Two ways to Understand 2"9-order Tensor

* Transformation by a tensor is give by the inner product

Linear form Quadratic form
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Outer Product (Tensor Product)

» Quter product makes a tensor from two vectors

i®b ™= (d®b) i =d(b- i)

* Tensor product e®e (||le|| = 1) defines projection

check it out!

~— Definition
Projection P

k3>(7>(x)) =P )




Outer Product (Tensor Product)

* Transformation for vectors in the outer product

check it out! (A&)@(Bl_;):?

Definition

A _14 A®b

(G®b) -1 = d(b - 1)




Tensor + Basis = Matrix

* Inner product with a basis vector gives a coefficient
* This is true even if the basis is not orthonormal
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Tensor & Matrix: Common Misunderstanding

AWrong idea! Correct your thought! ]

Tensor Basis x 'V'?t,”x
(coefficients)

<[N|ce | Go aheadI
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Matrix
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Orthonormal Coordinates

 Tensor can be written with bases and coefficients
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check it out!




Curvilinear Coordinates

* Non-orthogonal and un-normalized bases

* Dual bases solve the problem
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Curvilinear Coordinates

* Expression of a vector in curvilinear coordinates

5 93
91
g2 pl=v.g. mmp v=ryvlg,
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Curvilinear Coordinates

* Expression of a tensor in curvilinear coordinates
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Coordinate Transformation

tensor: A
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same tensor, different
(coefficient) matrix!




Rotation of a Tensor

* Un-rotating input and rotating output

tensor: A

tensor: R tensor: RT




Rotation of a Tensor

* Rotating bases while using the same coefficients

A= aijé)i ® é)] check it out!
I

rotation of basis

v
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Simple Elastic Potential
Energy for Continuum




Eigenvalue of Symmetric Tensor

* Eigenvalue of tensor is defined without matrix & coordinate

Linear form

AMW=A-v

vector A v = vector v

=l

tensor



Eigenvalues and Frobenius Norm

tr(A) — /11 + Az + Ag

__ 12
tr(Az) — /11 + /1% + /1% Frobenius norm

=tr(ATA) = z aizj = ||Allz
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rest shape deformed shape




rest shape deformed shape




rest shape

F : deformation gradient tensor
F = 0%/0X

P =

L
Ao =
= p
W ey

linear form

deformed shape

dx = FdX




SVD of Deformation Gradient Tensor
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SVD of Deformation Gradient Tensor
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e Y isthe value we want for energy 5 @

* but SVDis costly 4
 How can we obtain X without SVD? V)
\_




Gram Matrix F' F Stands for Length Change

e C = FTF: right Cauchy-Green tensor

. Fe
e

F jL
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L*(e) =e"F'Fe

Quadratic form

Right Cauchy-Green tensor

27



Eigenvalue: Right Cauchy Green Tensor F'F

* Right Cauchy Green tensor is symmetric F'F = VX?V7T

* Eigenvalues of FTF is squared of singular values : 02, 62, 02
1,0%,03

\ 0-127_}1
| vy

rest config. deformation in rest config.



Eigenvalue: Green Lagrange Tensor F'F — I

A
T

rest config

FI'F—1
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deformation in rest config



Making Energy from Eigenvalue

* Energy for isotropic material

W(F) = |IF'F —I||f = (of — 1)* + (o5 — 1)? + (0§ — 1)?

> CGEOARY
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Let’s put penalty on the absolute value of
(6f —1),(0% — 1) and (65 — 1)




How can We Formulate Elastic Energy?

Hard to choose!

Strategy A: Elastic energy W is a function of eigenvalues
of Green-Lagrange strain E = FTF — |

W = I@— I|%, where F =

cancel rotation cancel translation

Strategy B: Elastic energy W is a sum of square distances
after cancelling rotation and translation
5 5 Ln2
W = mipz a)iHRXi +t — le

R,l A
l



Making Energy from Eigenvalue

* Energy for isotropic material

W(F) = |IF'F —I||f = (of — 1)* + (o5 — 1)? + (0§ — 1)?

~a This energy doesn’t have costly SVD and eigen
bk decomposition easy to compute gradient & hessian!



Making Energy from Eigenvalue

W(F) = ||[FTF — I||z = (6f — 1)?* + (05 — 1)? + (0§ — 1)?

Wait... W(F) = 0 is not always no deformation. L ,.\
What about mirror reflection g; = —17? i
w
y =(x*—-1) 5 Fiar

v |
= < vy /\

This energy is not
robust to inversion




Invertible FEM [Irving et al. 2004]

* Elastic potential energy based on singular values of F that
are g;, not on the eigen values of FTF that are o}’

G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA '04)
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