
Einstein’s Summation Rule

• Repeated indices are summed over
I have made a great 

discovery in mathematics!

𝑎 ⋅ 𝑏 = 𝑎𝑖𝑏𝑖 = ෍
𝑖
𝑎𝑖𝑏𝑖

𝐴, 𝐵 𝐹 = 𝐴𝑖𝑗𝐵𝑖𝑗 = ෍
𝑗

෍
𝑖

𝐴𝑖𝑗𝐵𝑖𝑗

Frobenius inner product

inner product



Let’s Practice Einstein’s Summation Rule

𝐴𝑇𝐵 𝑖𝑗 = ?

𝑡𝑟(𝐴) = ?

Ԧ𝑎𝑇𝑏𝐼
𝑖𝑗

= ?

𝑡𝑟(𝐴𝑇𝐵) = ?

𝑎𝑖𝑖𝑎𝑗𝑗 = ?

𝑎𝑖𝑏𝑖 = ?

𝑎𝑖𝑖𝑎𝑖𝑖 = ?



Frobenius Inner Product 𝑨, 𝑩 𝑭 = 𝑨𝒊𝒋𝑩𝒊𝒋

𝑅𝐴, 𝐵 𝐹 = 𝑅𝑖𝑘𝐴𝑘𝑗𝐵𝑖𝑗 = ෍
𝑖

𝑅 Ԧ𝑎𝑖
𝑇𝑏𝑖

= 𝑅𝑖𝑘 𝐵𝐴𝑇
𝑖𝑘 = 𝑅, 𝐵𝐴𝑇

𝐹 = 𝑅, ෍
𝑖
𝑏𝑖⨂ Ԧ𝑎𝑖

𝐹

= 𝐴𝑘𝑗 𝑅𝑇𝐵 𝑘𝑗 = 𝐴, 𝑅𝑇𝐵 𝐹 = ෍
𝑖

Ԧ𝑎𝑖
𝑇

𝑅𝑏𝑖

𝐴 = Ԧ𝑎1, Ԧ𝑎2, ⋯ , Ԧ𝑎𝑛

𝐵 = 𝑏1, 𝑏2, ⋯ , 𝑏𝑛  
𝐴, 𝐵 𝐹 = ෍

𝑖
Ԧ𝑎𝑖

𝑇
𝑏𝑖



Tensor



What is Tensor?

vector Ԧ𝑣 

scalar 𝑏

vector 𝑢 

tensor

tensor 𝐵 

scalar 𝑎

tensor 𝐴 

In mathematics, a tensor is an algebraic 
object that describes a (multilinear) 
relationship between sets of algebraic 
objects related to a vector space.

https://en.wikipedia.org/wiki/Tensor



Two ways to Understand 2nd-order Tensor

• Transformation by a tensor is give by the inner product

Linear form

𝑢 = 𝐴 ⋅ Ԧ𝑣

vector Ԧ𝑣 vector 𝑢 

tensor

Quadratic form

a = 𝑢 ⋅ (𝐴 ⋅ Ԧ𝑣)

tensor

scalar 𝑎
vector 𝑢 

vector Ԧ𝑣 



Outer Product (Tensor Product)

• Outer product makes a tensor from two vectors

Ԧ𝑎⨂𝑏 Ԧ𝑎⨂𝑏 ⋅ 𝑢 = Ԧ𝑎(𝑏 ⋅ 𝑢)

• Tensor product Ԧ𝑒⨂ Ԧ𝑒 ( 𝑒 = 1)  defines projection
check it out! 

𝒫 𝒫 𝑥 = 𝒫

Projection 𝒫

Definition



Outer Product (Tensor Product)

• Transformation for vectors in the outer product

(𝐴 Ԧ𝑎)⨂(𝐵𝑏)=?

Ԧ𝑎⨂𝑏 ⋅ 𝑢 = Ԧ𝑎(𝑏 ⋅ 𝑢)

check it out! 

Ԧ𝑎⨂𝑏

Definition



Tensor + Basis = Matrix

• Inner product with a basis vector gives a coefficient
• This is true even if the basis is not orthonormal

𝑣𝑖 = Ԧ𝑣 ⋅ Ԧ𝑒𝑖

𝑎𝑖𝑗 = Ԧ𝑒𝑖 ⋅ (𝐴 ⋅ Ԧ𝑒𝑗)



Tensor & Matrix: Common Misunderstanding

Tensor Matrix
(coefficients)

Basis

Wrong idea! Correct your thought! 

Tensor Basis Matrix
(coefficients)

Nice ! Go ahead! 



Orthonormal Coordinates

• Tensor can be written with bases and coefficients

Ԧ𝑒1

Ԧ𝑒2

Ԧ𝑒3

𝑒𝑖 ⋅ 𝑒𝑗 = 𝛿𝑖𝑗 𝑣𝑖 = Ԧ𝑣 ⋅ Ԧ𝑒𝑖

Ԧ𝑣 = 𝑣𝑖 Ԧ𝑒𝑖

𝑎𝑖𝑗 = Ԧ𝑒𝑖 ⋅ (𝐴 ⋅ Ԧ𝑒𝑗)

𝐴 = 𝑎𝑖𝑗 Ԧ𝑒𝑖 ⊗ Ԧ𝑒𝑗

check it out! 



Curvilinear Coordinates

• Non-orthogonal and un-normalized bases

• Dual bases solve the problem

Ԧ𝑔1

Ԧ𝑔2

Ԧ𝑔3

Ԧ𝑔𝑖 ⋅ Ԧ𝑔𝑗 ≠ 𝛿𝑖𝑗

Ԧ𝑔1

Ԧ𝑔𝑖 ⋅ Ԧ𝑔𝑗 = 𝛿𝑖
𝑗

dual basis

Ԧ𝑔3

Ԧ𝑔2

Ԧ𝑔1 =
Ԧ𝑔2 × Ԧ𝑔3

Ԧ𝑔2 ⋅ Ԧ𝑔2 × Ԧ𝑔3

Ԧ𝑔2 =
Ԧ𝑔3 × Ԧ𝑔1

Ԧ𝑔3 ⋅ Ԧ𝑔3 × Ԧ𝑔1

Ԧ𝑔3 =
Ԧ𝑔1 × Ԧ𝑔2

Ԧ𝑔1 ⋅ Ԧ𝑔1 × Ԧ𝑔2



Curvilinear Coordinates

• Expression of a vector in curvilinear coordinates

Ԧ𝑔1

Ԧ𝑔2

Ԧ𝑔3

𝑔𝑖 ⋅ 𝑔𝑗 = 𝛿𝑖
𝑗dual basis

Ԧ𝑔1 Ԧ𝑔3

Ԧ𝑔2

𝑣𝑖 = Ԧ𝑣 ⋅ Ԧ𝑔𝑖 Ԧ𝑣 = 𝑣𝑖 Ԧ𝑔𝑖

𝑣𝑖 = Ԧ𝑣 ⋅ Ԧ𝑔𝑖 Ԧ𝑣 = 𝑣𝑖 Ԧ𝑔𝑖



Curvilinear Coordinates

• Expression of a tensor in curvilinear coordinates

Ԧ𝑔1

Ԧ𝑔2

Ԧ𝑔3

𝑔𝑖 ⋅ 𝑔𝑗 = 𝛿𝑖
𝑗dual basis

Ԧ𝑔1 Ԧ𝑔3

Ԧ𝑔2

𝑎𝑖𝑗 = Ԧ𝑔𝑖 ⋅ (𝐴 ⋅ Ԧ𝑔𝑗)

𝑎𝑖𝑗 = Ԧ𝑔𝑖 ⋅ (𝐴 ⋅ Ԧ𝑔𝑗)

𝐴 = 𝑎𝑖𝑗 Ԧ𝑔𝑖 ⊗ Ԧ𝑔𝑗

𝐴 = 𝑎𝑖𝑗 Ԧ𝑔𝑖 ⊗ Ԧ𝑔𝑗

𝑎 𝑗
𝑖 = Ԧ𝑔𝑖 ⋅ (𝐴 ⋅ Ԧ𝑔𝑖) 𝐴 = 𝑎 𝑗

𝑖 Ԧ𝑔𝑖 ⊗ Ԧ𝑔𝑗

𝑎𝑖
 𝑗

= Ԧ𝑔𝑖 ⋅ (𝐴 ⋅ Ԧ𝑔𝑗) 𝐴 = 𝑎𝑖
 𝑗

Ԧ𝑔𝑖 ⊗ Ԧ𝑔𝑗



Coordinate Transformation

tensor: 𝐴

Ԧ𝑒1

Ԧ𝑒2

Ԧ𝑒3

𝑎𝑖𝑗 = Ԧ𝑒𝑖 ⋅ (𝐴 ⋅ Ԧ𝑒𝑗)

Ԧ𝑒′1

Ԧ𝑒′2

Ԧ𝑒′3

𝑎′𝑖𝑗 = Ԧ𝑒′𝑖 ⋅ (𝐴 ⋅ Ԧ𝑒′𝑗)

same tensor, different 
(coefficient) matrix! 



Rotation of a Tensor

• Un-rotating input and rotating output

tensor: 𝐴 tensor: 𝑅𝑇
tensor: 𝑅

𝑢 = 𝑅𝐴𝑅𝑇 Ԧ𝑣

Ԧ𝑣𝑢



Rotation of a Tensor

• Rotating bases while using the same coefficients

𝐴 = 𝑎𝑖𝑗 Ԧ𝑒𝑖 ⊗ Ԧ𝑒𝑗

𝐴′ = 𝑎𝑖𝑗(𝑅 Ԧ𝑒𝑖) ⊗ (𝑅 Ԧ𝑒𝑗)

      = 𝑎𝑖𝑗𝑅( Ԧ𝑒𝑖 ⊗ Ԧ𝑒𝑗)𝑅𝑇

      = 𝑅(𝑎𝑖𝑗 Ԧ𝑒𝑖 ⊗ Ԧ𝑒𝑗)𝑅𝑇

      = 𝑅𝐴𝑅𝑇

check it out! 

rotation of basis



Simple Elastic Potential 
Energy for Continuum



Eigenvalue of Symmetric Tensor

• Eigenvalue of tensor is defined without matrix & coordinate 

Linear form

𝜆 Ԧ𝑣 = 𝐴 ⋅ Ԧ𝑣

vector Ԧ𝑣 vector 𝜆 Ԧ𝑣 

tensor



= tr 𝐴𝑇𝐴 = ෍

1≤𝑖,𝑗≤3

𝑎𝑖𝑗
2 = 𝐴 𝐹

2

Eigenvalues and Frobenius Norm

tr A = 𝜆1 + 𝜆2 + 𝜆3

from characteristic equation

tr 𝐴2 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2

𝐴2 Ԧ𝑒 = 𝜆2 Ԧ𝑒 

Frobenius norm



rest shape deformed shape



rest shape deformed shape



rest shape deformed shape

𝑑 Ԧ𝑋
𝑑 Ԧ𝑥 = 𝐹𝑑 Ԧ𝑋

𝐹 : deformation gradient tensor

𝐹 = Τ𝜕 Ԧ𝑥 𝜕 Ԧ𝑋

linear form



SVD of Deformation Gradient Tensor

𝐹 = 𝑈Σ𝑉𝑇

𝑉𝑇 Ԧ𝑣2

𝑉𝑇 Ԧ𝑣1

𝑉𝑇

Σ𝑉𝑇 Ԧ𝑣2

Σ𝑉𝑇 Ԧ𝑣1

Σ

𝐹 Ԧ𝑣2

𝐹 Ԧ𝑣1

𝑈

Ԧ𝑣2 Ԧ𝑣1

𝑉 = Ԧ𝑣1, Ԧ𝑣2

Σ =

𝜎1

𝜎2

𝜎3



SVD of Deformation Gradient Tensor

𝐹 = 𝑈Σ𝑉𝑇 Σ =

𝜎1

𝜎2

𝜎3

• Σ is the value we want for energy
• but SVD is costly
• How can we obtain Σ without SVD? 



Gram Matrix 𝑭𝑻𝑭 Stands for Length Change

• 𝐶 = 𝐹𝑇𝐹: right Cauchy-Green tensor

27

𝐹
Ԧ𝑒

𝐹 Ԧ𝑒

𝐿2 Ԧ𝑒 = Ԧ𝑒𝑇𝐹𝑇𝐹 Ԧ𝑒

𝐿

1 Ԧ𝑒

Quadratic form

𝐿2

Right Cauchy-Green tensor 



Eigenvalue: Right Cauchy Green Tensor 𝑭𝑻𝑭 

• Right Cauchy Green tensor is symmetric 𝐹𝑇𝐹 = 𝑉Σ2𝑉𝑇

• Eigenvalues of 𝐹𝑇𝐹 is squared of singular values : 𝜎1
2, 𝜎2

2, 𝜎3
2

Ԧ𝑣2 Ԧ𝑣1

rest config.

𝐹𝑇𝐹

𝜎2
2 Ԧ𝑣2

𝜎1
2 Ԧ𝑣1

deformation in rest config.



Eigenvalue: Green Lagrange Tensor 𝑭𝑻𝑭 − 𝑰

𝐹𝑇𝐹 − 𝐼

Ԧ𝑣2
𝜎2

2 − 1 Ԧ𝑣2Ԧ𝑣1

𝜎1
2 − 1 Ԧ𝑣1

rest config deformation in rest config



Making Energy from Eigenvalue

• Energy for isotropic material

𝑊 𝐹 = 𝐹𝑇𝐹 − 𝐼 𝐹
2 = 𝜎1

2 − 1 2 + 𝜎2
2 − 1 2 + 𝜎3

2 − 1 2

𝐹𝑇𝐹 − 𝐼

Ԧ𝑣2
𝜎2

2 − 1 Ԧ𝑣2Ԧ𝑣1

𝜎1
2 − 1 Ԧ𝑣1

Let’s put penalty on the absolute value of 
𝜎1

2 − 1 , 𝜎2
2 − 1  and 𝜎3

2 − 1



How can We Formulate Elastic Energy?

31

Strategy A: Elastic energy 𝑊 is a function of eigenvalues 
of Green-Lagrange strain 𝐸 = 𝐹𝑇𝐹 − 𝐼   

𝑊 = 𝐹𝑇𝐹 − 𝐼 𝐹
2 , where 𝐹 =  Τ𝜕 Ԧ𝑥 𝜕 Ԧ𝑋

Strategy B: Elastic energy 𝑊 is a sum of square distances 
after cancelling rotation and translation

𝑊 = min
𝑅,Ԧ𝑡

෍

𝑖

𝜔𝑖 𝑅 Ԧ𝑋𝑖 + Ԧ𝑡 − Ԧ𝑥𝑖

2

Hard to choose!

cancel rotation cancel translation



Making Energy from Eigenvalue

• Energy for isotropic material

𝑊 𝐹 = 𝐹𝑇𝐹 − 𝐼 𝐹
2 = 𝜎1

2 − 1 2 + 𝜎2
2 − 1 2 + 𝜎3

2 − 1 2

This energy doesn’t have costly SVD and eigen 
decomposition easy to compute gradient & hessian!



Making Energy from Eigenvalue

𝑊 𝐹 = 𝐹𝑇𝐹 − 𝐼 𝐹
2 = 𝜎1

2 − 1 2 + 𝜎2
2 − 1 2 + 𝜎3

2 − 1 2

Wait… 𝑊 𝐹 = 0 is not always no deformation.
What about mirror reflection 𝜎𝑖 = −1?

𝑦 = 𝑥2 − 1 2

This energy is not 
robust to inversion



Invertible FEM [Irving et al. 2004]

• Elastic potential energy based on singular values of 𝐹 that 
are 𝜎𝑖, not on the eigen values of 𝐹𝑇𝐹 that are 𝜎𝑖

2 

G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In 

Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA '04)
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