Resource Management in
Programming Languages

R

Compiled and Interpreted Language

Compiled Language Interpreted Language

& & interpreter

code executable

Compiled and Interpreted Language

Compiled Language Interpreted Language

A

Static typing [€ > Dynamic typing

Compile-time Memory management Garbage collection

The Difference of Speed

Compiled
language

Interpreted
language

Speed comparison of various programming languages
Method: calculating through the Leibniz formula 100000000 times

Julia (A((S—:Tjri %EE Vl}f
C++ cI n 4[-) v
Rust Ejﬁlﬁa? %?

Ada (gnat cc ¥ 2.
Commonq}(gL% ..'
ad 1.

a SC

JavaJscrlpt :
9 w%ﬂ f- W,
Clojure v1 1 1 .
. Py

le v
SRS

Python (CPyt

Clojure (Babashkaei ngl l 13.2

103 104
Minimum time (ms) in log scale

Generated: 2023-02-05 18:52 https://github.com/niklas-heer/speed-comparison

https://niklas-heer.github.io/speed-comparison/

Why Such Difference in Speed?

Static typing Dynamic typing
@ int one_up(int a) { ﬁ def one_up(a):
return a + 1; returna+1

}

Let’s use a specialized tool for No idea what’s coming.
Let’s search for a tool when it comes.

cutting | prepared beforehand.

A -

»

Variables and Resource

void main() {

int* a = ndw ¢har[4];

| own a piece of memory.
My lifetime is between “{“ and “}’

2.

o/

Address Data

Ox 7fffffffffffe2fb [0 [0 /O |O [0 [0 [0 (O
fOx 7fffffffffffe2fc |0 |O |0 |0 |O [O (O |1 \

Ox 7fffffffffffe2fd (O [0 O |O |0 |O |O (O

Ox7fffffffffffe2fe (O [O |O |O |O |O |O |O
\&Ox 7fffffffffffe2ff |O |0 |0 |O |[O [O [0 |O J

Ox 7fffffffffffe300 (O (O |O |O |O |0 |O (O

Ox 7fffffffffffe301 (O [0 O |O |O |O |O |O

Resource Management

void main() {

int* a=new int[32];
al0] = 1;
delete[] a;

J

Resource Management .
%e,take thIS!]

P
J:»«I

nt* a =new int[32];

Can | get a horse?

Resource Management

Have fun!

t* a=newint[32];

Resource Management

| can use the
resource!

Resource Management

Had fun?

telete[] a;

Can | return the hourse?

Resource Management

telete[] a;

Now | don’t have resource

Great, thanks!

12

Resource Management

delete[] a;

J

My Lifetime is over!

int* a

Problems in Manual Memory Management

Dangling pointer Multiple ownership Memory leak

3 void main() { @ void main() { @ void main() {

int* a = new int[10];

int* a = nullptr; int* a = new int[10];

%0]=1; int* b = a; a[0] =1,
int* a = new int[10]; delete]] a; }
deletell a: teletel] b;
M0l =1 } My lifetime is over
| believe | own a horse. fe=_' I'mreturning ,
Let's trv to ridel o I’'m free!
et’s try to ride!
Y \lz“ Me too!
~a

wi|l

Garbage Collection

I’'m suspending the program for a
while to catch escaped horses

I’'m free! \m

15

Resource Acquasition is Initialization (RAIl)

Not RAII RAII

#include <vector>
void main() {

void main() {
int* a = nullptr;
auto a = std::vector<int>(10);

}

a = new int[10];

}

My lifetime My lifetime ends | have a horse | automatically
starts but | don’t but | wont’ return when my return a horse when
have a horse the horse lifetime starts my lifetime ends

, |

S

\2\

y Y

Differences in Reference, Move and Clone

Reference

Just photo is OK!

Move Clone (deep copy)

\m h

I give you ownership
| own a different

\ but similar horse
a..
\
0 il h
| receive ownership
.l 17

Rust

Why Rust (not C++)?

 Safety
e Strictly implementing RAll

* Old languages just keep getting complecated for backward
compatibility. Modern language can keep only the good stuffs in
the old languages.

C, C++ 98, C++ 11, C++ 14, C++17, C++20 Rust

W W

'_T'r'" + + El _D_,DQ E] _DDQ

The White House Says You Shoud Use Rust
Administration The Re:

FEBRUARY 26, 2024

Press Release: Future Software Should
Be Memory Safe

Cffts » ONCD » BRIEFING ROOM » PRESS RELEASE

Leaders in Industry Support White House Call to Address Root Cause of
Many of the Worst Cyber Attacks

o) - -

|Rust,/Go, C#, Java,
2 Swift, Python, JS§

Read the full report here ‘ {

WASHINGTON - Today, the White House Office of the National Cyber
Director (ONCD) released a report calling on the technical community to
proactively reduce the attack surface in cyberspace. ONCD makes the case
that technology manufacturers can prevent entire classes of vulnerabilities

from entering the digital ecosystem by adopting memory safe programming

languages. ONCD is also encouraging the research community to address the

. . _—

20

Why Rust (not C++)?

* It is easy to use other libraries (a.k.a. crates)
Rust

find library on crates.io use foobar::FooBar;

A

tar -xzf foobar-dev-3.3.4.tar.gz

CH++onon L

Build is failed
Struggle with CMake

foobar-dev-3.3.4.thr.gz
Find library on

various pages g

https://www.reddit.com/r/ProgrammerHumor/comments/1hnfuvk/why
idliketoavoidusinecop/?rdt=41480

Grammer Basics: Primitive Types

* Rust type name is short, but explains its size on memory

C/C++ %
Int 132
unsigned int uint32
unsigned char u8
float f32
double f64

Grammer Basics: Declaring Variables

Declaring variable Declaring mutual variable
type
¥ let a: a3¥: let mut a=1u32;
let b =2i32;
| own this horse, | own this horse
and | can just look at it & I canrideonit

2.

o/

&

Grammer Basics: Static/Dynamic Array

‘3 let b: [f32;2] =[5.0, 6.0]; Declaration of a static array
let idx: usize = 0; Index of the array should has "usize type.

let b0 = b[idx]; usize is 64-bit in 64 bit OS.

let c: Vec<u32> =vec![1.0, 2.0]; Declaration of a dynamic array
let d = vec![3u32; 100]; Another declaration of a dynamic array

Grammer Basics: Reference & Slice

Reference Mutable reference
Just photo is OK! Only one person
can ride without

ownership

Tt = e
wiie Y fa\.!g

let c = & mut a;

R T =
oy & = =

Slice
(reference to array)

let b =vecl![1.0, 2.0];

let c: &[f32] = &b;

This reference is called ”slice”

dbg!(c.len()); // 2

Slice has length

Grammer Basics: Functions

a:.-E fn one_up(a: &mut u32) { Declaration of a function
il 5 +=1;

}

let b =1;
one_up(&mut b); Explicitly giving mutual reference to the function
dbg!(b); // 2

How to use Rust

Project structure
main.rs
Project_folder\ fn main() {

I src\ println!("Hello, world!");

| L main.rs }
LCargo.toml

Cargo.toml

[package]

name = "task00"
version = "0.1.0"
edition = "2021"

[dependencies]
anyhow ="1.0.97"
del-canvas = “0.1.3”

Running project

> cargo build Build project

> cargo run Build & run project

> cargo fmt Format code

> cargo clippy Improve code

Integrated Development Environment (IDE)

* Code editor with linter, suggestion, jumps
e Static program analysis
* Debugger

4 =

Visual Studio Code RustRover

	Default Section
	Slide 1: Resource Management in Programming Languages
	Slide 2: Compiled and Interpreted Language
	Slide 3: Compiled and Interpreted Language
	Slide 4: The Difference of Speed
	Slide 5: Why Such Difference in Speed?
	Slide 6: Variables and Resource
	Slide 7: Resource Management
	Slide 8: Resource Management
	Slide 9: Resource Management
	Slide 10: Resource Management
	Slide 11: Resource Management
	Slide 12: Resource Management
	Slide 13: Resource Management
	Slide 14: Problems in Manual Memory Management
	Slide 15: Garbage Collection
	Slide 16: Resource Acquasition is Initialization (RAII)
	Slide 17: Differences in Reference, Move and Clone
	Slide 18: Rust
	Slide 19: Why Rust (not C++)?
	Slide 20: The White House Says You Shoud Use Rust
	Slide 21: Why Rust (not C++)?
	Slide 22: Grammer Basics: Primitive Types
	Slide 23: Grammer Basics: Declaring Variables
	Slide 24: Grammer Basics: Static/Dynamic Array
	Slide 25: Grammer Basics: Reference & Slice
	Slide 26: Grammer Basics: Functions
	Slide 27: How to use Rust
	Slide 28: Integrated Development Environment (IDE)

