
Resource Management in
Programming Languages

1

Compiled and Interpreted Language

Compiled Language Interpreted Language

2

interpreter

code executable

code

Compiled and Interpreted Language

Compiled Language Interpreted Language

3

Static typing Dynamic typing

Compile-time Memory management Garbage collection

The Difference of Speed

4https://niklas-heer.github.io/speed-comparison/

Compiled
language

Interpreted
language

Why Such Difference in Speed?

Static typing Dynamic typing

5

Let’s use a specialized tool for
cutting I prepared beforehand.

No idea what’s coming.
Let’s search for a tool when it comes.

def one_up(a):
 return a + 1

int one_up(int a) {
 return a + 1;
}

Variables and Resource

6

void main() {

 int* a = new char[4];

}

int* a

I own a piece of memory.
My lifetime is between “{“ and “}”

Address Data

0x7fffffffffffe2fb 0 0 0 0 0 0 0 0

0x7fffffffffffe2fc 0 0 0 0 0 0 0 1

0x7fffffffffffe2fd 0 0 0 0 0 0 0 0

0x7fffffffffffe2fe 0 0 0 0 0 0 0 0

0x7fffffffffffe2ff 0 0 0 0 0 0 0 0

0x7fffffffffffe300 0 0 0 0 0 0 0 0

0x7fffffffffffe301 0 0 0 0 0 0 0 0

Resource Management

7

void main() {

 int* a = new int[32];

 a[0] = 1;

 delete[] a;

}

OS

Resource Management

8

void main() {

 int* a = new int[32];

 a[0] = 1;

 delete[] a;

}

Can I get a horse?

Sure, take this!

OS

int* a

Resource Management

9

void main() {

 int* a = new int[32];

 a[0] = 1;

 delete[] a;

}

Thanks!

Have fun!

OS

int* a

Resource Management

10

void main() {

 int* a = new int[32];

 a[0] = 1;

 delete[] a;

}

OS

I can use the
resource!

Resource Management

11

void main() {

 int* a = new int[32];

 a[0] = 1;

 delete[] a;

}

OS

Can I return the hourse?

int* a

Had fun?

Resource Management

12

void main() {

 int* a = new int[32];

 a[0] = 1;

 delete[] a;

}

Great, thanks!

OS

Now I don’t have resource

int* a

Resource Management

13

void main() {

 int* a = new int[32];

 a[0] = 1;

 delete[] a;

}

See ya!

OS

My Lifetime is over!

int* a

Problems in Manual Memory Management

Dangling pointer Multiple ownership

14

Memory leak

void main() {
 int* a = nullptr;
 a[0] = 1;
 int* a = new int[10];
 delete[] a;
 a[0] = 1
}

void main() {
 int* a = new int[10];
 int* b = a;
 delete[] a;
 delete[] b;
}

I believe I own a horse.
Let’s try to ride!

void main() {
 int* a = new int[10];
 a[0] = 1;
}

I’m returning

Me too!

My lifetime is over

I’m free!

Garbage Collection

15

Thanks, bro!

OS

I’m suspending the program for a
while to catch escaped horses

I’m free!

I’m free!

Resource Acquasition is Initialization (RAII)

Not RAII RAII

16
int* a

My lifetime
starts but I don’t

have a horse

My lifetime ends
but I wont’ return

the horse

void main() {
 int* a = nullptr;
 a = new int[10];
}

#include <vector>
void main() {
 auto a = std::vector<int>(10);
}

I have a horse
when my

lifetime starts

I automatically
return a horse when

my lifetime ends

I’m free!

Differences in Reference, Move and Clone

Reference Move

17

Clone (deep copy)

int a

int& a
int& a

Just photo is OK! I give you ownership

I receive ownership

I own a different
but similar horse

Rust

18

Why Rust (not C++)?

• Old languages just keep getting complecated for backward
compatibility. Modern language can keep only the good stuffs in
the old languages.

19

• Safety

• Strictly implementing RAII

C, C++ 98, C++ 11, C++ 14, C++17, C++20 Rust

The White House Says You Shoud Use Rust

20

Why Rust (not C++)?

• It is easy to use other libraries (a.k.a. crates)

21
https://www.reddit.com/r/ProgrammerHumor/comments/1hnfuvk/why
idliketoavoidusingcpp/?rdt=41480

Grammer Basics: Primitive Types

• Rust type name is short, but explains its size on memory

22

C/C++ Rust

int i32

unsigned int uint32

unsigned char u8

float f32

double f64

Grammer Basics: Declaring Variables

Declaring variable Declaring mutual variable

23

let a: f32 = 1.;
let b = 2i32;

let mut a = 1u32;
a += 1;

I own this horse
& I can ride on it

I own this horse,
and I can just look at it

type

Grammer Basics: Static/Dynamic Array

24

let b: [f32;2] = [5.0, 6.0];

let idx: usize = 0;
let b0 = b[idx];

let c: Vec<u32> = vec![1.0, 2.0];
let d = vec![3u32; 100];

Declaration of a static array

Index of the array should has `usize` type.
usize is 64-bit in 64 bit OS.

Declaration of a dynamic array

Another declaration of a dynamic array

Grammer Basics: Reference & Slice

Reference Mutable reference

25

Slice
(reference to array)

a: i32

let b: &i32 = &a;

Just photo is OK!

a: i32

Only one person
can ride without

ownership

let c = & mut a;

let c = &a;

let b = vec![1.0, 2.0];
let c: &[f32] = &b;

dbg!(c.len()); // 2

This reference is called ”slice”

Slice has length

Grammer Basics: Functions

26

fn one_up(a: &mut u32) {
 a += 1;
}

let b = 1;
one_up(&mut b);
dbg!(b); // 2

Declaration of a function

Explicitly giving mutual reference to the function

How to use Rust

Project structure Running project

27

Project_folder\

┣ src\
┃┗ main.rs
┗Cargo.toml

➢ cargo build

➢ cargo run
=
➢ cargo fmt

> cargo clippy

Build project

Build & run project

Format code

Improve code[package]
name = "task00"
version = "0.1.0"
edition = "2021"

[dependencies]
anyhow = "1.0.97"
del-canvas = “0.1.3”

fn main() {
 println!("Hello, world!");
}

main.rs

Cargo.toml

Integrated Development Environment (IDE)

• Code editor with linter, suggestion, jumps

• Static program analysis

• Debugger

28

RustRoverVisual Studio Code

	Default Section
	Slide 1: Resource Management in Programming Languages
	Slide 2: Compiled and Interpreted Language
	Slide 3: Compiled and Interpreted Language
	Slide 4: The Difference of Speed
	Slide 5: Why Such Difference in Speed?
	Slide 6: Variables and Resource
	Slide 7: Resource Management
	Slide 8: Resource Management
	Slide 9: Resource Management
	Slide 10: Resource Management
	Slide 11: Resource Management
	Slide 12: Resource Management
	Slide 13: Resource Management
	Slide 14: Problems in Manual Memory Management
	Slide 15: Garbage Collection
	Slide 16: Resource Acquasition is Initialization (RAII)
	Slide 17: Differences in Reference, Move and Clone
	Slide 18: Rust
	Slide 19: Why Rust (not C++)?
	Slide 20: The White House Says You Shoud Use Rust
	Slide 21: Why Rust (not C++)?
	Slide 22: Grammer Basics: Primitive Types
	Slide 23: Grammer Basics: Declaring Variables
	Slide 24: Grammer Basics: Static/Dynamic Array
	Slide 25: Grammer Basics: Reference & Slice
	Slide 26: Grammer Basics: Functions
	Slide 27: How to use Rust
	Slide 28: Integrated Development Environment (IDE)

