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What is Rotation?

• linear transformation 𝑅 is a rotation if length 
does not change and volume does not flip
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What is Rotation?

• linear transformation 𝑅 is a rotation if length 
does not change and volume does not flip

𝑅
Ԧ𝑣

𝑅 Ԧ𝑣 Ԧ𝑣 2 = 𝑅 Ԧ𝑣 2

Ԧ𝑣𝑇 Ԧ𝑣 = Ԧ𝑣𝑇𝑅𝑇𝑅 Ԧ𝑣

𝑅𝑇𝑅 = 𝐼

Ԧ𝑣 can be arbitrary!
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Gram Matrix 𝑭𝑻𝑭 Stands for Deformed Len.

𝐹
Ԧ𝑒

𝐹 Ԧ𝑒

4

𝐿2 Ԧ𝑒 = Ԧ𝑒𝑇𝐹𝑇𝐹 Ԧ𝑒

𝐿

1
Ԧ𝑒

Quadratic form

𝐿2

Positive semi-definite
matrix



What is Rotation?

• linear transformation 𝑅 is a rotation if length 
does not change and volume does not flip
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𝑅

No flip!

det 𝑅𝑇𝑅 = det I

det(𝑅)2 = 1

det(𝑅) = ±1



Example of Applications of Rotation
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rigid body 
animation

character 
animation

robotics stereo 
reconstruction

Credit: Kborer @Wikipedia Credit: Kbosak@WikipediaCredit: Banlu 
Kemiyatorn@Wikipedia

Credit: Jo 
Teichmann@Wikipedia



Representation of 3D Rotation

For large rotation: 

•Rotation matrix

•Axis-angle formulation

•Euler angle

•Quaternion

7We four are awesome! I will be an idol when I grow up!

For small rotation:

• Infinitesimal rotation



Rotation Around Axis

• The rotation is parameterized by axis vector Ԧ𝑒 and angle 𝜃 
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Ԧ𝑥′ = 𝑅 Ԧ𝑒, 𝜃 Ԧ𝑥 Ԧ𝑒

Ԧ𝑥
Ԧ𝑥′

𝜃



un-rotate: 𝑄𝑇

Rotation around Rotated Axis
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𝑅 𝑄𝜔, 𝜃 = 𝑄 ∗ 𝑅 𝜔, 𝜃 ∗ 𝑄𝑇

• Axis is rotated with 𝑄 → un-rotate the object with 𝑄𝑇 then 
rotate around 𝜔, then rotate back with 𝑄

𝜔 𝜃

𝜃

𝑄 Ԧ𝑒

Ԧ𝑥′ Ԧ𝑥
rotate: 𝑄
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𝑅 𝑄 Ԧ𝑒, 𝜃 = 𝑄 ∗ 𝑅 Ԧ𝑒, 𝜃 ∗ 𝑄𝑇

𝑅 𝑄 Ԧ𝑒, 𝜃2 ∗ 𝑄 = 𝑄 ∗ 𝑅 Ԧ𝑒, 𝜃2

intrinsic rotation:
axis rotated

matrix don’t commute!

extrinsic rotation: 
axis fix



Rotation around Rotated Axis: Robotic Arm

• Rotation of end-effector in a 4-link articulated body
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𝑅4 𝑅3𝑅2𝑅1 Ԧ𝑒4, 𝜃4 ∗ 𝑅3 𝑅2𝑅1 Ԧ𝑒3, 𝜃3 ∗ 𝑅2 𝑅1 Ԧ𝑒2, 𝜃2 ∗ 𝑅1 Ԧ𝑒1, 𝜃1

intrinsic

𝑅1 Ԧ𝑒1, 𝜃1 ∗ 𝑅2 Ԧ𝑒2, 𝜃2 ∗ 𝑅3 Ԧ𝑒3, 𝜃3 ∗ 𝑅4 Ԧ𝑒4, 𝜃4

extrinsic



Rotation around Rotated Axis: Gimbal

• Gimbal is used to let object freely rotate (e.g, gyroscope)
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Credit: Lucas Vieira @ Wikipedia



Euler Angle for Rotation Parameterization
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Ԧ𝑥′ = 𝑅3 𝑅2𝑅1 Ԧ𝑒𝑍, 𝜃3 ∗ 𝑅2 𝑅1 Ԧ𝑒𝑋, 𝜃2 ∗ 𝑅1 Ԧ𝑒𝑍, 𝜃1 Ԧ𝑥
intrinsic

Ԧ𝑥′ = 𝑅1 Ԧ𝑒𝑍, 𝜃1 ∗ 𝑅2 Ԧ𝑒𝑋, 𝜃2 ∗ 𝑅3 Ԧ𝑒𝑍, 𝜃3 Ԧ𝑥

extrinsic

credit: Xavax @ Wikipedia

Ԧ𝑒𝑍, 𝜃3Ԧ𝑒𝑍, 𝜃1

Ԧ𝑒𝑋, 𝜃2



Vector Rotation Parameterizations
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Ԧ𝑒

𝜃

Euler-Rodrigues parameterization: Ԧ𝑒 sin
𝜃

2
, cos

𝜃

2

Cayley-Gibbs-Rodrigues parameterization: Ԧ𝑒 tan
𝜃

2

Euler vector (rotation vector): 𝜔 = Ԧ𝑒𝜃

Scaling unit axis vector Ԧ𝑒 with trigonometric func. of 𝜃
• 360° rotation become zero rotation
• Elegantly composite rotations



Discovery of Quaternion

• Sir William Rowan Hamilton (1805–1865) from Ireland
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Pa, imaginary number 
for 3D yet?

No clue for 10 years… 
Let me take a walk for a change…



Discovery of Quaternion

• Sir William Rowan Hamilton (1805–1865) from Ireland
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Credit: Wisher@wikipedia Credit: Cone83@wikipedia

Finally got an idea  
𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1



Properties of Quaternion

• One real number and three imaginary numbers
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𝑞 = 𝑟 + 𝑣𝑥𝒊 + 𝑣𝑦𝒋 + 𝑣𝑧𝒌

ത𝑞 = 𝑟 − 𝑣𝑥𝒊 − 𝑣𝑦𝒋 − 𝑣𝑧𝒌

• Conjugate quaternion

• Norm of quaternion

𝑞 2 = 𝑞 ത𝑞 = 𝑟2 + 𝑣𝑥
2+ 𝑣𝑢

2+ 𝑣𝑧
2



Rotation with Quaternion
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Ԧ𝑒

Ԧ𝑝

Ԧ𝑝′
𝜃

𝑞 = cos
𝜃

2
+ sin

𝜃

2
𝑒𝑥𝒊 + 𝑒𝑦𝒋 + 𝑒𝑧𝒌

𝑝 = 𝑝𝑥𝒊 + 𝑝𝑦𝒋 + 𝑝𝑧𝒌

𝑝′ = 𝑝′𝑥𝒊 + 𝑝′𝑦𝒋 + 𝑝′𝑧𝒌

Euler-Rodrigues 
parameterization

𝑝′ = 𝑞𝑝ത𝑞

rotated vector

input vector



Composite Rotation

• Multiplication of quaternion is associative
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𝑞12 = 𝑞2𝑞1 quaternion don’t commute!

rotation with 𝑞1 and then 𝑞2  



Cayley–Hamilton Theorem
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• Eigen values are the root of the characteristic polynomial

𝑝 𝜆 = det 𝐴 − 𝜆𝐼 = ෍ 𝑐𝑖𝜆𝑖 = 0

𝑝 𝐴 = ෍ 𝑐𝑖𝐴𝑖 = 0

Characteristic polynomial of a matrix 𝐴 produces zero , 
when inputting 𝐴



Cayley–Hamilton Theorem for a 3x3 Matrix

• Characteristic polynomial of a matrix 𝐴 produces zero , when 
inputting 𝐴
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𝑝 𝐴 = 𝐴3 + 𝑐1𝐴2 + 𝑐2𝐴 + 𝑐3𝐼 = 0

𝑐1 = tr A = 𝜆1 + 𝜆2 + 𝜆3

𝑐2 = Τ1 2 tr(𝐴)2 − 𝑡𝑟(𝐴2) = 𝜆1𝜆2 + 𝜆2𝜆3 +  𝜆3𝜆1

𝑐3 = det 𝐴 = 𝜆1 𝜆2 𝜆3



Infinitesimal Rotation is a Vector

• What if the rotation is very small?
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Ω𝑇 = −Ω

𝑅 = 𝐼 + Ω

𝑅𝑇𝑅 = 𝐼 + Ω 𝑇 𝐼 + Ω = 𝐼

Ω is a skew 
symmetric matrix!



Properties of 3x3 Skew Symmetric Matrix

• Skew matrix has only three independent elements
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Ω =
0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
≡ Skew 𝜔

𝜔 = 𝜔1, 𝜔2, 𝜔3
𝑇Ω Ԧ𝑣 = 𝜔 × Ԧ𝑣

• Skew matrix defines cross product
Ԧ𝑥

𝜔

Skew(𝜔) Ԧ𝑥



3x3 Skew Symmetric Matrix Squared
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Ω2 = Skew 𝜔 2 =

−𝜔2
2 − 𝜔3

2 𝜔1𝜔2 𝜔1𝜔3

𝜔1𝜔2 −𝜔3
2 − 𝜔1

2 𝜔2𝜔3

𝜔1𝜔3 𝜔2𝜔3 −𝜔1
2 − 𝜔2

2

                               = 𝜔⨂𝜔 − 𝜔𝑇𝜔𝐼

tr Ω2 = 𝜔1
2 + 𝜔2

2 + 𝜔3
2 − 3 𝜔1

2 + 𝜔2
2 + 𝜔3

2

               = −2 𝜔 2



3x3 Skew Symmetric Matrix Cubed
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𝑝 Ω = Ω3 + (trΩ)Ω2 +
(trΩ)2−tr(Ω2)

2
Ω + (det Ω)𝐼 = 0

tr Ω = 0,  det Ω = 0, tr Ω2 = −2 𝜔 2

Ω3 = − 𝜔 2Ω

Cayley-Hamilton’s theorem



Skew Symmetric Matrix of Unit Vector 𝒆
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𝐸 = Skew Ԧ𝑒 , 𝑤ℎ𝑒𝑟𝑒 Ԧ𝑒 = 1

Ԧ𝑥 𝜃

Ԧ𝑒

E Ԧ𝑥

𝐸3 Ԧ𝑥

Ԧ𝑒
Ԧ𝑥

E2 Ԧ𝑥

( Ԧ𝑒⨂ Ԧ𝑒) Ԧ𝑥

𝐸2 = Ԧ𝑒⨂ Ԧ𝑒 − 𝐼 𝐸3 = −𝐸



Rodriguez’s rotation formula

From Infinitesimal Rotation Vector to Matrix

27

𝑅 Ԧ𝑒, 𝜃 = exp θ𝐸

= I +
𝜃

1!
𝐸 +

𝜃2

2!
𝐸2 +

𝜃3

3!
𝐸3 +

𝜃4

4!
𝐸4 …

= I +  sin𝜃𝐸 + (1 − cos𝜃)𝐸2

E = Skew( Ԧ𝑒)=
0 𝑒3 −𝑒2

−𝑒3 0 𝑒1

𝑒2 −𝑒1 0

27

Ԧ𝑥

Ԧ𝑥′
𝜃

Ԧ𝑒



Rodriguez’s Rotation Formula Explained
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Ԧ𝑒

Ԧ𝑥
Ԧ𝑥′

𝜃

𝑅 Ԧ𝑒, 𝜃 = I +  sin𝜃𝐸 + (1 − cos𝜃)𝐸2
𝜃

sin 𝜃 𝐸 Ԧ𝑥

− cos 𝜃 𝐸2 Ԧ𝑥

𝜔
Ԧ𝑥

𝐸2 Ԧ𝑥

(𝐼 + 𝐸2) Ԧ𝑥

side view



Jacobian Determinant: Volume Change Ratio

Jacobian 𝐽 = ∇ Ԧ𝑓

Input 
volume: 𝑑𝑣

Output 
volume = det 𝐽 𝑑𝑣

input space ℝ𝑛 

𝑓: ℝ𝑛 → ℝ𝑛

output space ℝ𝑛 

Ԧ𝑥
Ԧ𝑓( Ԧ𝑥)

Output:
parallelepiped

Input:
small cube



Jacobian Determinant: Volume Change Ratio

input: 
small change in Euler angle 
(𝑑𝜃1, 𝑑𝜃2 , 𝑑𝜃3 )

ℝ3 → ℝ3

output: 
infinitesimal rotation
 d𝜔 = (𝑑𝜔1, 𝑑𝜔2 , 𝑑𝜔3 )

If output volume is not zero det 𝐽 ≠ 0, there is an inverse map

det 𝐽
Credit: Lucas Vieira 
@Wkipedia

Credit: Lionel Brits 
@ Wikipedia



Gimbal Lock: Zero Jacobian Determinant 
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input: 
small change in Euler angle 
(𝑑𝜃1, 𝑑𝜃2 , 𝑑𝜃3 )

ℝ3 → ℝ3

output: 
infinitesimal rotation
 d𝜔 = (𝑑𝜔1, 𝑑𝜔2 , 𝑑𝜔3 )

det 𝐽 = 0

no inverse map when axes aligned!

Credit: Lionel Brits 
@ Wikipedia

Credit: Drummyfish 
@Wikipedia



Comparison of 3D Rotation Representations

Rotation matrix 

•DoF: 3x3=9

•rotation, scale, 
sheer, mirror

•☺ general

• large

32

Quaternion

•DoF: 1+3=4

• rotation, scale

•☺ compact

• not understandable

Euler angle

•DoF: 3

•rotation

•☺ understandable

• gimbal lock

Axis-angle formulation

Rodriguez’s formula
cos

𝜃

2
, sin

𝜃

2

Infinitesimal rotation
differentiation

exponential



DoF Elimination using Parameterization 

Parameterize solution Ԧ𝑥 𝜃  such that constraints naturally satisfy

argmin
Ԧ𝑥⊂ Ԧ𝑥|𝑔 Ԧ𝑥 =0

𝑊( Ԧ𝑥) argmin
𝜃

𝑊( Ԧ𝑥 𝜃 )
𝜃

Ԧ𝑥 𝜃  

e.g., 𝑔 Ԧ𝑥 = 𝑥 + 𝑦 + 2 = 0

ቊ
𝑥 = +𝜃 − 1
𝑦 = −𝜃 − 1



Minimize Parameterized Solution

argmin
𝜃

𝑊( Ԧ𝑥 𝜃 )

𝑑𝜃 = −
𝜕2𝑊

𝜕𝜃2

−1
𝜕𝑊

𝜕𝜃

Newton-Raphson method

find the root of gradient! 



Differentiation of Rotation Matrix

Change under constraints 𝑅 𝑡 𝑇𝑅 𝑡 = 𝐼→ DoF elimination 

walking on the edge!

𝑅 𝑡 𝑇𝑅 𝑡 = 𝐼

𝑅 𝑡



Parameterization of Rotation

36

𝑅 𝑡 𝑇𝑅 𝑡 = 𝐼 𝑅

𝑅 exp Skew 𝜔

exp Skew 𝜔

Let’s walk on the line 
to find the minimum



Optimization of Rotation: Pattern R*dR
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Minimize 𝑊(𝑅) Minimize 𝑊(𝑅(𝜔))

𝑅 = 𝑅𝑖 exp Skew 𝜔

𝑅𝑖+1 = 𝑅𝑖 exp Skew(𝜔

𝜔 = −
𝜕2𝑊

𝜕2𝜔

−1
𝜕𝑊

𝜕𝜔

Newton method

find the root of gradient! 

exp Skew 𝜔

  = 𝐼 + Skew 𝜔 +
1

2
Skew 𝜔 2 ⋯



Optimization of Rotation: Pattern dR*R

38

Minimize 𝑊(𝑅) Minimize 𝑊(𝑅(𝜔))

𝑅𝑖+1 = exp Skew(𝜔  𝑅𝑖

𝑅 = exp Skew 𝜔 𝑅𝑖

𝜔 = −
𝜕2𝑊

𝜕2𝜔

−1
𝜕𝑊

𝜕𝜔

Newton method

find the root of gradient! 

exp Skew 𝜔

  = 𝐼 + Skew 𝜔 +
1

2
Skew 𝜔 2 ⋯



Gradient and Hessian Including Rotation

𝑊 𝑅 = 𝑅 Ԧ𝑝 − Ԧ𝑞 2

= 𝑅 Ԧ𝑝 − Ԧ𝑞 𝑇 𝑅 Ԧ𝑝 − Ԧ𝑞 = Ԧ𝑝 2 − 2 Ԧ𝑞𝑇𝑅 Ԧ𝑝 + Ԧ𝑞 2

the only changing term

−2 Ԧ𝑞𝑇𝑅 𝜔 Ԧ𝑝 = −2 Ԧ𝑞𝑇 exp Skew 𝜔 𝑅 Ԧ𝑝

≅ −2 Ԧ𝑞𝑇 𝐼 + Skew 𝜔 +
1

2
Skew 𝜔 2 𝑅 Ԧ𝑝

1st order

−2 Ԧ𝑞𝑇Skew 𝜔 𝑅 Ԧ𝑝 = −2𝜔𝑇Skew 𝑅 Ԧ𝑝 Ԧ𝑞 = 𝜔𝑇 2 Ԧ𝑞 × 𝑅 Ԧ𝑝

2nd order

− Ԧ𝑞𝑇Skew 𝜔 2𝑅 Ԧ𝑝 = − Ԧ𝑞𝑇 𝜔⨂𝜔 − 𝜔𝑇𝜔𝐼 𝑅 Ԧ𝑝 = 𝜔𝑇 Ԧ𝑞𝑇𝑅 Ԧ𝑝𝐼 − Ԧ𝑞⨂𝑅 Ԧ𝑝 𝜔



Gradient and Hessian Including Rotation

𝑊 𝑅 𝜔 = 𝑅 𝜔 Ԧ𝑝 − Ԧ𝑞 2

𝜕𝑊

𝜕𝜔
=

𝜕

𝜕𝜔
𝜔𝑇 2 Ԧ𝑞 × 𝑅 Ԧ𝑝 = 2 Ԧ𝑞 × 𝑅 Ԧ𝑝Gradient: 

𝜕2𝑊

𝜕𝜔2
=

𝜕2

𝜕𝜔2
𝜔𝑇 Ԧ𝑞𝑇𝑅 Ԧ𝑝𝐼 − Ԧ𝑞⨂𝑅 Ԧ𝑝 𝜔

            = 2 Ԧ𝑞𝑇𝑅 Ԧ𝑝𝐼 − Ԧ𝑞⨂𝑅 Ԧ𝑝 − 𝑅 Ԧ𝑝⨂ Ԧ𝑞

Hessian must be symmetric! 

Hessian: 



Differentiation w.r.t Vectors

• Transform the equation into a polynomial

41

𝑊 𝜔 = ⋯
             = ⋯           

             = 𝑎 + 𝑏𝑇𝜔 + 𝜔𝑇𝐶𝜔 + ⋯

Gradient: 
𝜕𝑊

𝜕𝜔
= 𝑏

Hessian: 
𝜕2𝑊

𝜕𝜔2
= 𝐶𝑇 + 𝐶
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