Rotation



What is Rotation?

* inear transformation R is a rotation if length
does not change and volume does not flip
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Gram Matrix FTF Stands for Deformed Len.

Quadratic form

Positive semi-definite
matrix




What is Rotation?

* inear transformation R is a rotation if length
does not change and volume does not flip

R & det(RTR) = det()

¥

f det(R)? = 1
O . 4

No flip! N
det(R) = £1



Example of Applications of Rotation

rigid body character robotics stereo
animation animation reconstruction

Credit: Kborer @Wikipedia Credit: Banlu Credit: Jo Credit: Kbosak@Wikipedia
Kemiyatorn@Wikipedia Teichmann@Wikipedia



Representation of 3D Rotation

For large rotation: For small rotation:
* Rotation matrix *|Infinitesimal rotation
* Axis-angle formulation
*Euler angle
*Quaternion

P . o A ,:‘ A
tv ev <-’ ﬁ S
| '! | YA Al
| \
Sl

PR 4 AY¢

| -

A, A ‘AAD

We four are awesome! | will be an idol when | grow up!



Rotation Around Axis

* The rotation is parameterized by axis vector € and angle 8
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Rotation around Rotated Axis

* Axis is rotated with Q = un-rotate the object with Q' then
rotate around w, then rotate back with Q

R(Qw,0) = Q *R(w,0) * Q"

X

un-rotate:

)

o )



intrinsic rotation: extrinsic rotation:
axis rotated axis fix

R(QE,0) = Q 4R(¢,0) )+ Q"

|

R(Qe, 0,) *Q = Q * R(e, 0,)

matrix don't commute!




Rotation around Rotated Axis: Robotic Arm

* Rotation of end-effector in a 4-link articulated body

iIntrinsic

R4(R3R;R€4,0,) * R3(RyR1 €5, 03) * Ry(Rq €, 0,) * Ry(€y,6,)

Y T

R1(€1,01) * Ry (€3, 0;) * R3(€3,03) * Ry(€y,0,)



Rotation around Rotated Axis: Gimbal

e Gimbal is used to let object freely rotate (e.g, gyroscope)

Credit: Lucas Vieira @ Wikipedia
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Euler Angle for Rotation Parameterization

iIntrinsic

X" = R3(RyR€7,03) * Ry(R1€x,0;) * Ry(€7,6,)X

extrinsic ‘

.7?, — Rl (gz, 81) * Rz (é)X! 82) * R3 (gz, 93)32) credit: Xavax @ Wikipedia
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Vector Rotation Parameterizations

Euler vector (rotation vector): w = €0

Scaling unit axis vector e with trigonometric func. of 8
* 360° rotation become zero rotation
 Elegantly composite rotations

Cayley-Gibbs-Rodrigues parameterization: e tang

: L 5 . 6 0
Euler-Rodrigues parameterization: (e Sin—, COS E)




Discovery of Quaternion

* Sir William Rowan Hamilton (1805-1865) from Ireland

Pa, imaginary number m
N N

for 3D yet?

No clue for 10 years... @
Let me take a walk for a change...

‘»i«’

15



Discovery of Quaternion

* Sir William Rowan Hamilton (1805-1865) from Ireland

Finally got an idea &
i‘=j*=k*=ijk=-1

R Bt v

Credit: Wisher@wikipedia Credit: Cone83 @wikipedia
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Properties of Quaternion

* One real number and three imaginary numbers

q=r+vit+tv,j+vk

* Conjugate quaternion

q=1—01—v,j— v,k

* Norm of quaternion

1qll% = q@ = 7% + v, %+ v, >+ v,°



Rotation with Quaternion

Euler-Rodrigues
parameterization

e 0, . .
q= COSE + smE(exl +eyj + ezk)

P =pxl+pyj+pk
p =pLit+pyj+pk




Composite Rotation

* Multiplication of quaternion is associative

— CIZ ql quaternion don't commutel

-~ el
n N

>

7/

D



Cayley—Hamilton Theorem

* Eigen values are the root of the characteristic polynomial

p(A) = det(4 — AI) = Z c; At =0

Characteristic polynomial of a matrix A produces zero,
when inputting A

p(A) = z c;A' = 0




Cayley—Hamilton Theorem for a 3x3 Matrix

e Characteristic polynomial of a matrix A produces zero , when
inputting A

p(A) = A3 + C1A2 + CzA + C31 = (

C1 = tl‘(A) — Al + AZ + 2,3
Cyr = 1/2 {tl‘(A)z — tT(AZ)} — /11/12 + Az/lg + 13/11
C3 = det(A) — /11 /12 A3



Infinitesimal Rotation is a Vector

* What if the rotation is very small?

R=1+1(

v

RIR=U+QDTU+Q) =1

‘ ()is a skew

T _
' =—() symmetric matrix!




Properties of 3x3 Skew Symmetric Matrix

e Skew matrix has only three independent elements

0 —
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= Skew(w)

» Skew matrix defines cross product
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3x3 Skew Symmetric Matrix Squared

0% = Skew(w)? =

2 2

__(1)2 - (1)3

W1 -

w1 W3

BRG — &TEI

W1 W7

2

Wy W3

2

W1Ws3
W) W3

tr(QZ) — (1)12 + (1)22 —+ (1)32 — 3((,()12 —+ (1)22 + (,()32)

-2l




3x3 Skew Symmetric Matrix Cubed

p(Q) = Q3 + (trQ)Q? | (trQ)thr(Qz) QO+ (detQ)I =0

l trQ =0, detQ = 0,tr(Q?) = —2||w||?

0 = —||5]1%0




Skew Symmetric Matrix of Unit Vector e

E = Skew(e), where |le|| = 1

E? = éQ¢é — I E3=—E

c*7 2 e,

=1

M

e
Ex




From Infinitesimal Rotation Vector to Matrix

0 e; —e,
. E = Skew(e)=|—e 0 e
R(2,0) = exp(0E) e, —ei 0
=1+ 9E+92E2+93E3+94E4
B 1! 2! 3! 41~ 5|7‘
= [+ sinfE + (1 — cosO)E* -
X

Rodriguez’s rotation formula x'



Rodriguez’s Rotation Formula Explained
sin @ Ex

R(€,0) =1+ sinOE + (1 — cosO)E?




Jacobian Determinant: Volume Change Ratio

input space R" output space R"

small cube Output:
parallelepiped

Input » R Output
volume: dv | Jp—— volume = det(J) dv

Jacobian | = Vf



Jacobian Determinant: Volume Change Ratio

input: output:

small change in Euler angle infinitesimal rotation

(d@l, dgz - d93 ) da — (dwl, d(,()z - dwg )
IRS N RB

det(J)

Credit: Lionel Brits Credit: Lucas Vieira
@ Wikipedia @Wkipedia

If output volume is not zero det(J) # 0, there is an inverse map



Gimbal Lock: Zero Jacobian Determinant

input: output:

small change in Euler angle infinitesimal rotation

(d@l, dgz - d93 ) da — (d(,()]_, d(,l)z - d(U3 )
RS N RB

@
det(J)= 0

Credit: Lionel Brits Credit: Drummyfish
@ Wikipedia @ Wikipedia

no inverse map when axes aligned!
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Comparison of 3D Rotation Representations

Rotation matrix
*DoF: 3x3=9

erotation, scale,
sheer, mirror

*© general

*® large

Rodriguez’s formula

Axis-angle formulation

Euler angle Quaternion
*DoF: 3 *DoF: 1+3=4
erotation e rotation, scale
*© understandable *© compact
*® gimbal lock *® not understandable
exponential 6 0
COSE'SIDE

differentiation

Infinitesimal rotation



DoF Elimination using Parameterization

Parameterize solution x(8) such that constraints naturally satisfy

o . N
\ argmin W(x)- aremin W (x(0
Nl %(6) xc{x|g(x)=0} ge (x(6))
a i )
eg,gxX)=x+y+2=0
:x =+40—-1
' y=-0-1

\_ %




Minimize Parameterized Solution

al‘gmin W(f(@)) find the root of gradient!
6

Newton-Raphson method

o _[Pw] T (ow
I K




Differentiation of Rotation Matrix

Change under constraints R(t)T R(t) = I> DoF elimination

walking on the edge! m

i
é
é

',

R)TR() =1




Parameterization of Rotation

to find the minimum

ﬁ<[ Let’s walk on the Ime]

ROOTR(E) = I :
'\

@

a R exp{Skew(w)}

exp{Skew(w)}



Optimization of Rotation: Pattern R*dR

R = R; exp{Skew(w)}

N

Minimize W (R) Minimize W (R (w))

Newton method

A2

W =

eip{Skew(w)l ) N -~ _
= | + Skew(w) + ESkew(a)) Ri.|.1 - Ri eXp{(SkeW(a))}

_aza_

K

find the root of gradient!

_

ow
dw
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Optimization of Rotation: Pattern dR*R

R = exp{Skew(w)} R;

N

Minimize W (R) Minimize W (R (w))

Newton method

A2

W =

exp{Skew(w)} ‘ N
= I + Skew(w) + %SkeW@)2 Ri+1 — EXP{(SkeW((U)} Ri

_aza_

K

find the root of gradient!

xr

ow
dw

38



Gradient and Hessian Including Rotation
W(R) — ”Rﬁ — 6_1)”2 the only changing term

= (RP— D" (RP — §) = I|ﬁ||2+ 141

—2q"R(w)p = —2g" exp{Skew(w)} Rp

~ 2" {1 n { }Rﬁ

= —2&7Skew(Rp)§ = &7 (24 X RP)

- —§"@®3 - " GIIRF = &7 [G7RFI - §ORP]E



Gradient and Hessian Including Rotation

W(R(@)) = IR(&)P — Gll?

ow o
' S = T T'(2d X R =29 X Rp
Gradient: % 90 {0 (29 )} q p
Hessi 0°W 072
essian: — = — T(GTREI — QR &
052 0@? (7 (q" kP! = ®RP) &)}

= 24" Rpl — q®Rp — Rp®q
Hessian must be symmetricl



Differentiation w.r.t Vectors

* Transform the equation into a polynomial

W(@) = -
+b7TE + BTCE +
Gradient: 6_]/1)/ b
dw
‘W

Hessiani ——=CT +C
dw?
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