Optimization with
Constraints



Why Constraints?

* Solid deformation * Fluid
* Non penetration constraints * incompressibility constraints: vortex
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Not Minimum If Its Gradient is not Zero
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Maybe Minimum if Gradient is Zero

* Find a candidate where the gradient is zero VIW(x) = 0

VW(x) =0
maybe mlnlmum

find the root of gradient!
VW(x) + 0
Vnot minimum




Optimization with Constraint

* Find a point X where the function W (x) is minimized while
satisfying g(x¥) = 0

argmin W (x)
xc{x|g(x)=0}

argmin W (x)
X

g(x) = 0is an implicit
surface representation
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Abstract View of the Solution Space

argmin W (x)
fc{flg(f)=0}

argmin W (x) space for all the possible x
X
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Three Approaches to Handle Constraints

* Degree of Freedom (DoF) elimination f X '
e Optimization in the constraint space :
(

* Find minimum e in O
. = / ‘
* Approximate constraint as energy

* Penalty method
 Find minimum ¢ in O l
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* Lagrange multiplier method

* Chose gradient parallel to the constraint’s gradient =
* Find extremum e in

L

-



Degree of Freedom (DoF)
Elimination



Degree of Freedom (DoF) Elimination
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* Some DoF is fixed x = {ffree» J?fix}
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Newton Method for DoF Elimination &4

* Update, Gradient and Hessian for Free/Fix DoF

W = (VWfree> vow = |7 Wireesree ¥ Wireesis
VWfix I V Wfix,free V Wfix,fix |

* Update only dXf,. (While dxf;,, = 0) to achieve VWf o= 0

> ~1
dx = (dxfree> — [vzwfree,f‘ree O] (VWfree)
dxfix 0 I 0



DoF Elimination for General Constraint

Parameterize solution x(8) such that constraints naturally satisfy
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Minimize Parameterized Solution

argmin W (x(0))
0

find the root of gradient!

Newton-Raphson method
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DoF Elimination Use Cases

Fixing deformation in XYZ direction

Optimization for rotation & E
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Vortex method for fluid simulation ""‘“
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Penalty Method (Soft Constraint)



Deviation from Constraints is g(x)
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i Let’s put a penalty on the

¥ % | deviation from the constraint




Penalty Method: Constraint as Energy

* Adding additional energy to encourage constraint

minimize W (X) + ag?(x¥) W If « is large, g(%) becomes small
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Linear System for Penalty Method

argmln W (f) —|— a_{g 2 (_)_C)) find the root of gradient!
X

y 4

_

Minimize W + g with Newton’s method:

dx = —[V2W + aV2g?]~L(VW + aVg?)
|_'_l |_'_l

2Vg - Vg + 2V?%g 29Vyg



Lagrange Multiplier Method



je ne sais quoi!

Lagrange Multiplier Method

* At minimum point, two gradients VW, Vg should be parallel

N
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W VW || Vg

&

A # 0 s.t. VW = AVg



Why Parallel at Constrained Minimum?

 If VW, Vg are not parallel, smaller W (x) exists satisfying constraints

smaller W(x) satisfying constraints




Find Saddle Point not Minima for LM Method

* We changed minimization problem to saddle point finding problem

VW (%) = AWVg (%)

saddle point
' !
ARl

VW (%,)) = 0 where W(X,A) = W(x) — Ag(xX)

s Don’t minimize W (¥, ). Find
, . where the gradient is zero
% i using the Newton method
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Lin. System for Lagrange Multiplier Method

(vwoz) — AVg (%)
—g(x)

dA

) =H(x,A) =0

Newton-Raphson method

(d’?) — _[VH]"'H

V2ZW(X) — AV2g(%)

—Vg(xX)"

—Vg(X)

I

0

find the root!

VW (%) — AVg (%)
—g(x)

|



Let’s Practice Lagrange Multiplier Method

Maximize f(x,y) = x + y where g(x,y) = x*+y?2 —1 =0

check it out!
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