

Optimization with Constraints

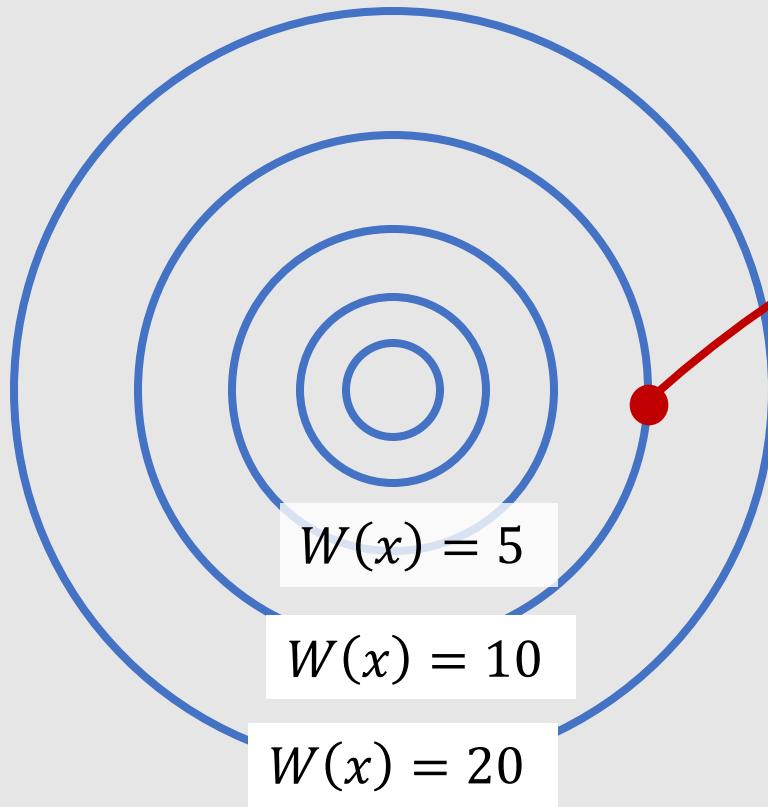
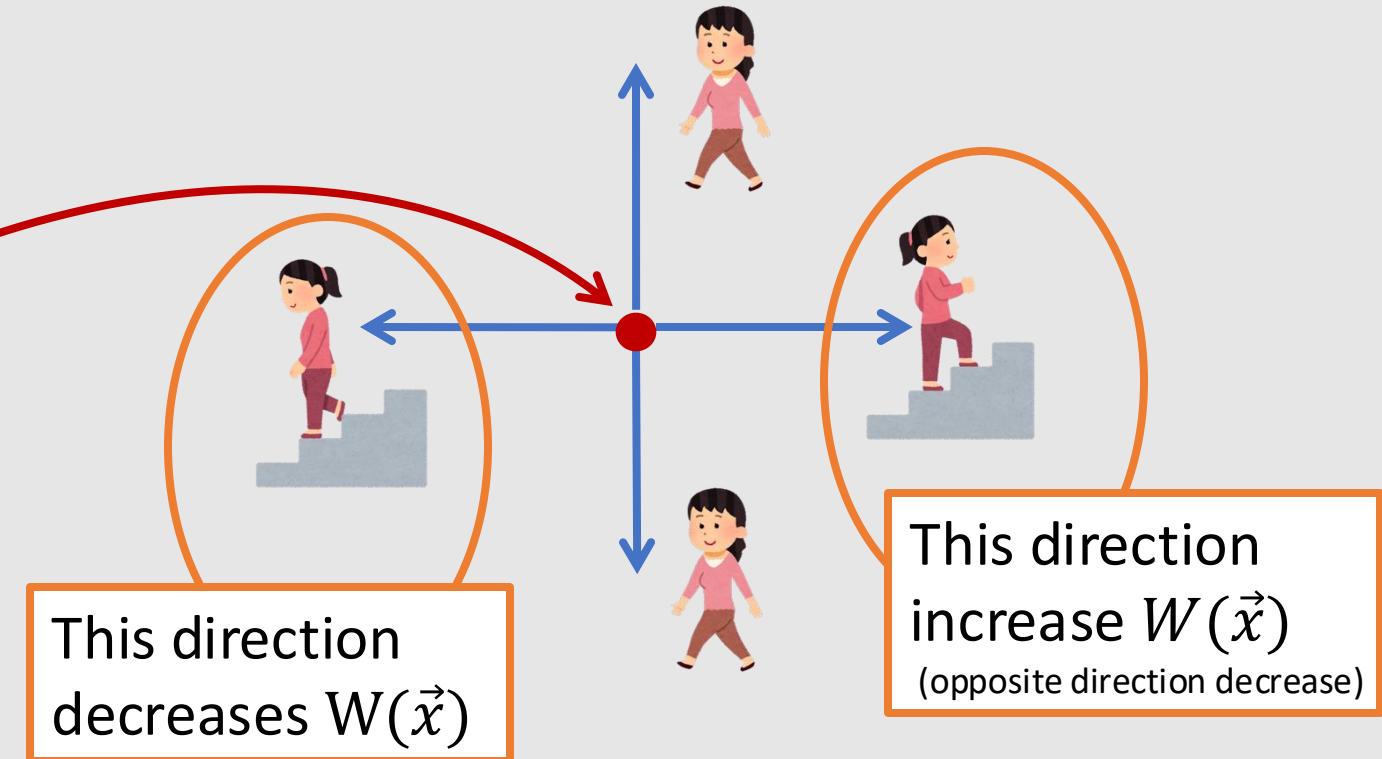
Why Constraints?

- Solid deformation
 - Non penetration constraints
- Fluid
 - incompressibility constraints: vortex

Credit: Damnsoft 09 @ Wikipedia

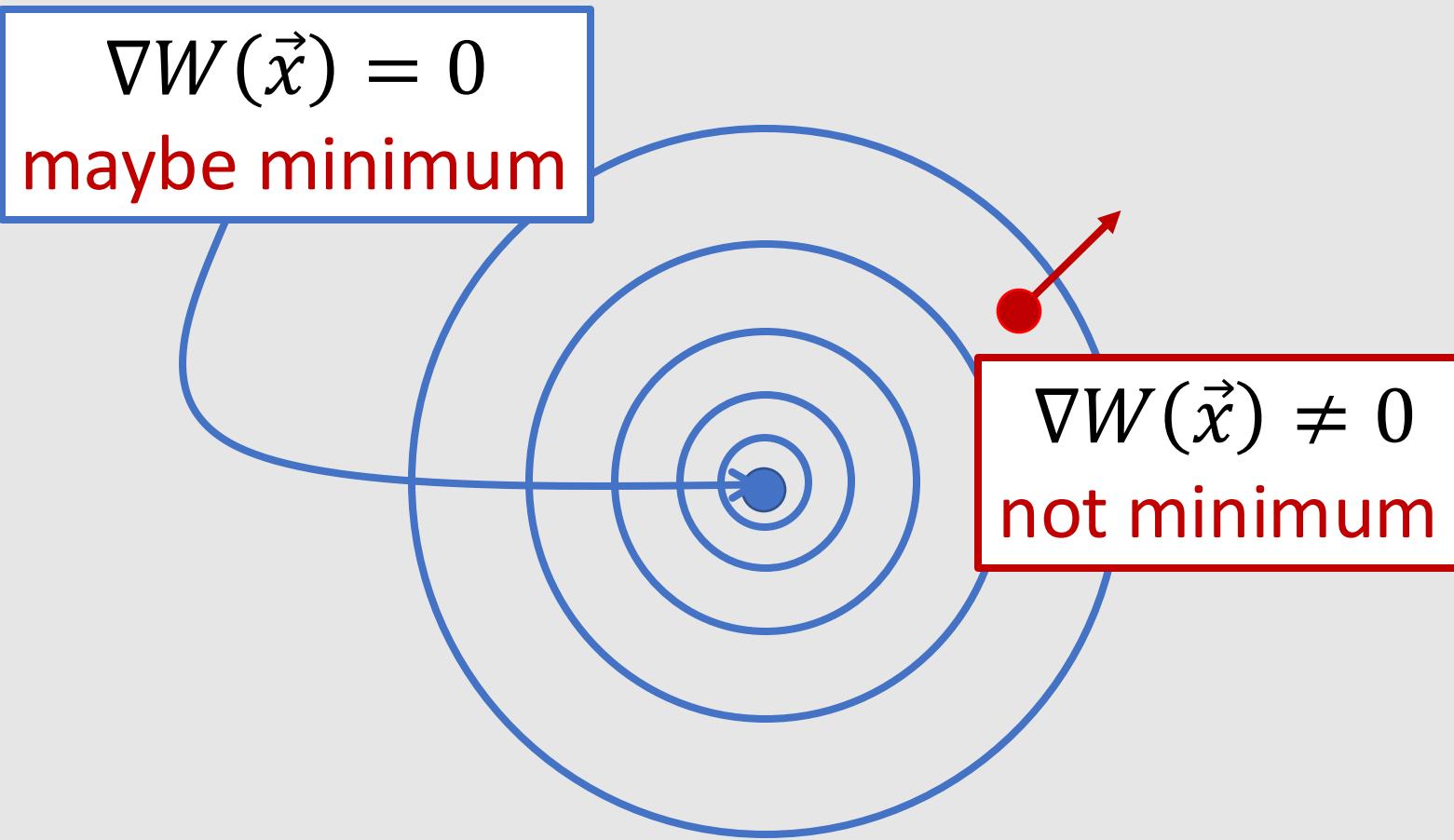
Credit: Astrobob @ Wikipedia

Not Minimum If Its Gradient is not Zero



Maybe Minimum if Gradient is Zero

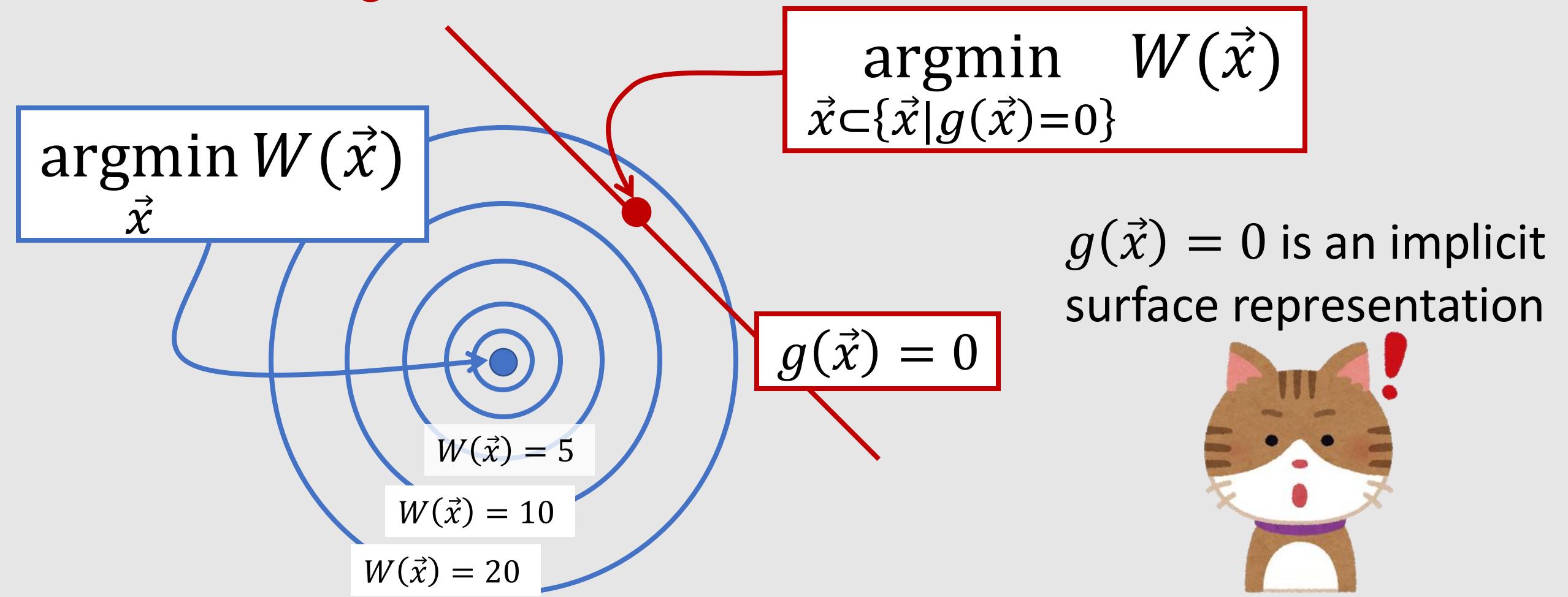
- Find a candidate where the gradient is zero $\nabla W(\vec{x}) = 0$



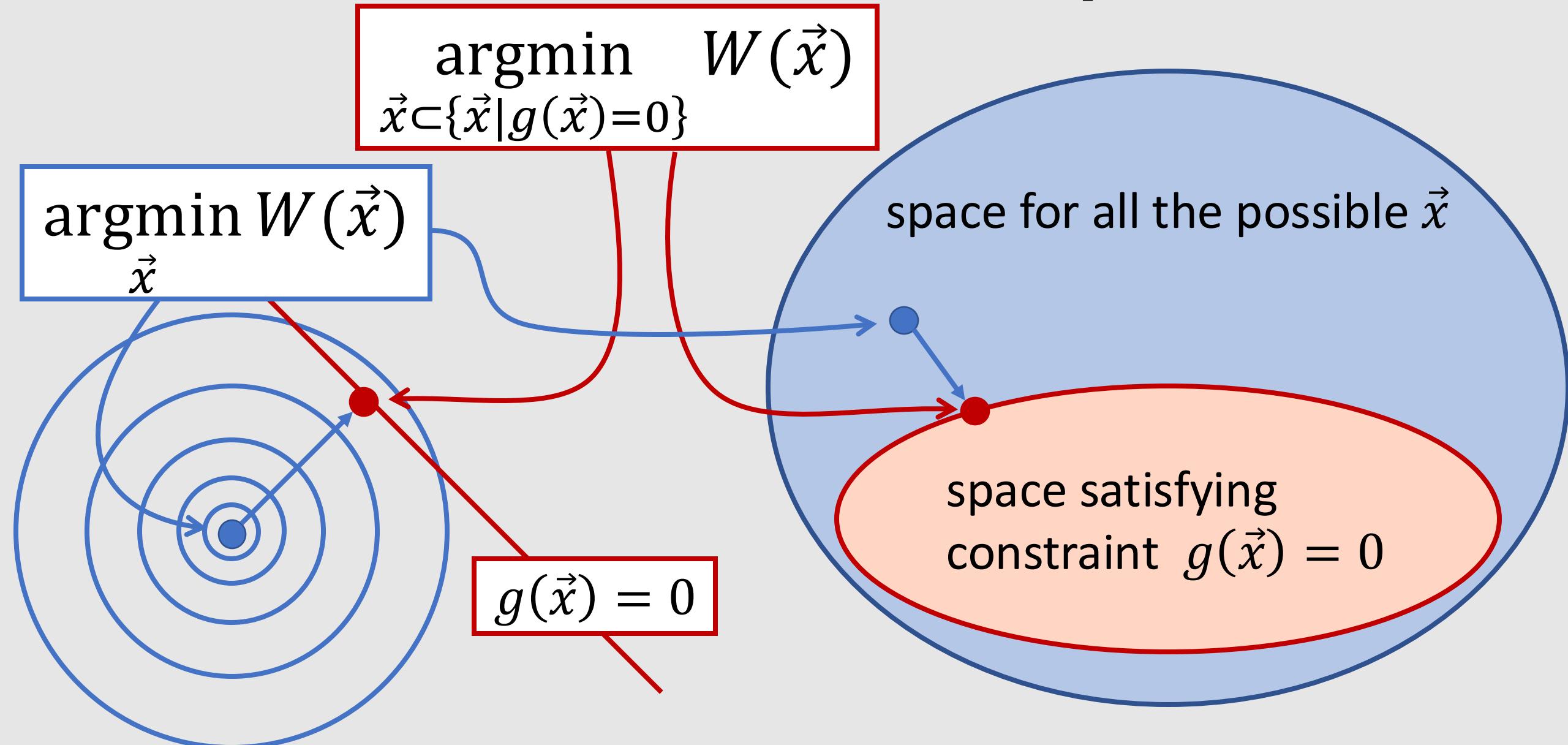
find the **root** of gradient!

Optimization with Constraint

- Find a point \vec{x} where the function $W(\vec{x})$ is minimized **while satisfying $g(\vec{x}) = 0$**



Abstract View of the Solution Space



Three Approaches to Handle Constraints

- ***Degree of Freedom (DoF) elimination***

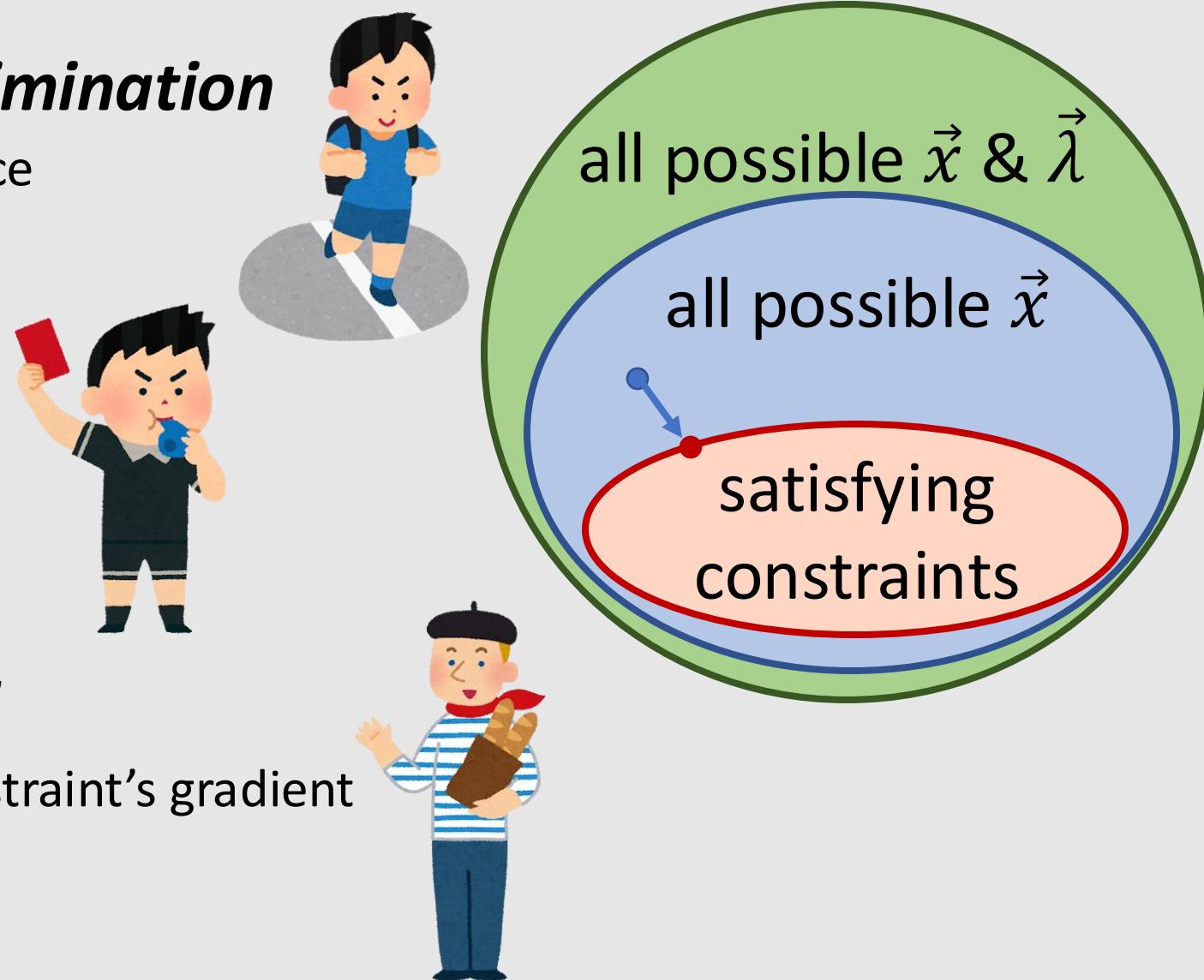
- Optimization in the constraint space
- Find minimum • in

- ***Penalty method***

- Approximate constraint as energy
- Find minimum • in

- ***Lagrange multiplier method***

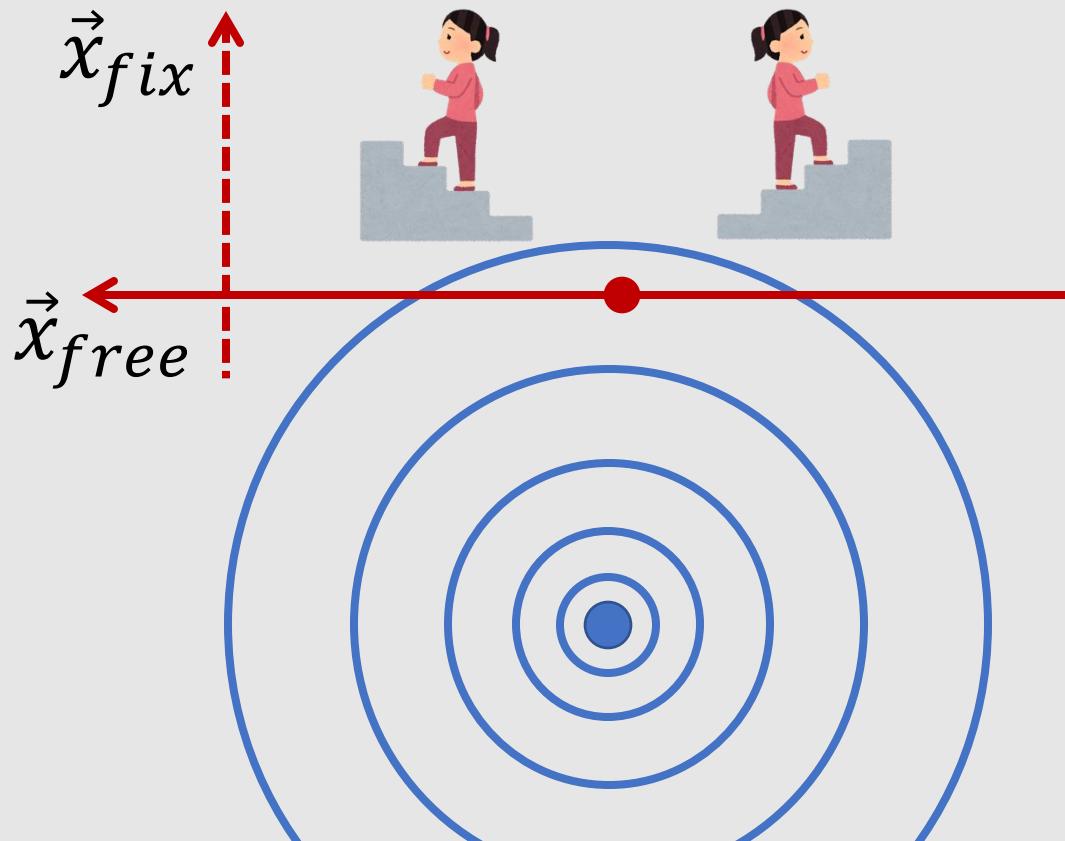
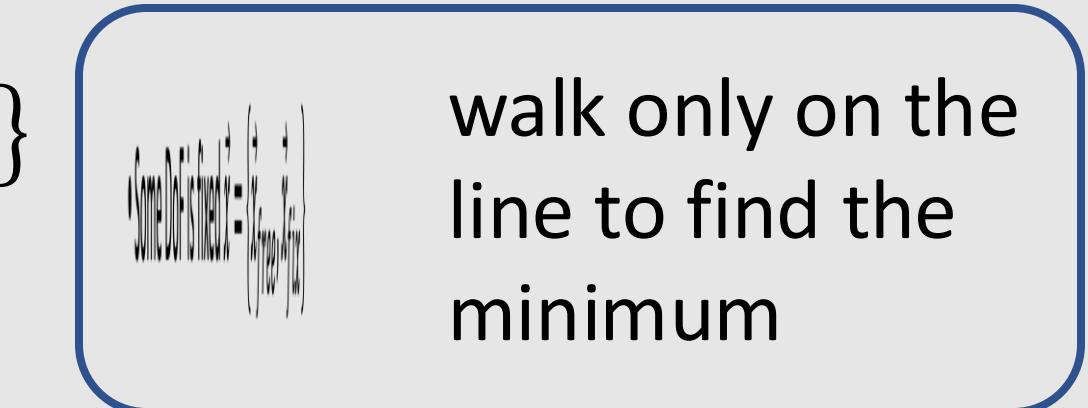
- Choose gradient parallel to the constraint's gradient
- Find **extremum** • in



Degree of Freedom (DoF) Elimination

Degree of Freedom (DoF) Elimination

- Some DoF is fixed $\vec{x} = \{\vec{x}_{free}, \vec{x}_{fix}\}$



$$dW(\vec{x}_{free}, \vec{x}_{fix}) = 0$$

$$\nabla W \cdot \begin{pmatrix} d\vec{x}_{free} \\ d\vec{x}_{fix} \end{pmatrix} = 0$$

$$= 0$$

Newton Method for DoF Elimination

- Update, Gradient and Hessian for Free/Fix DoF

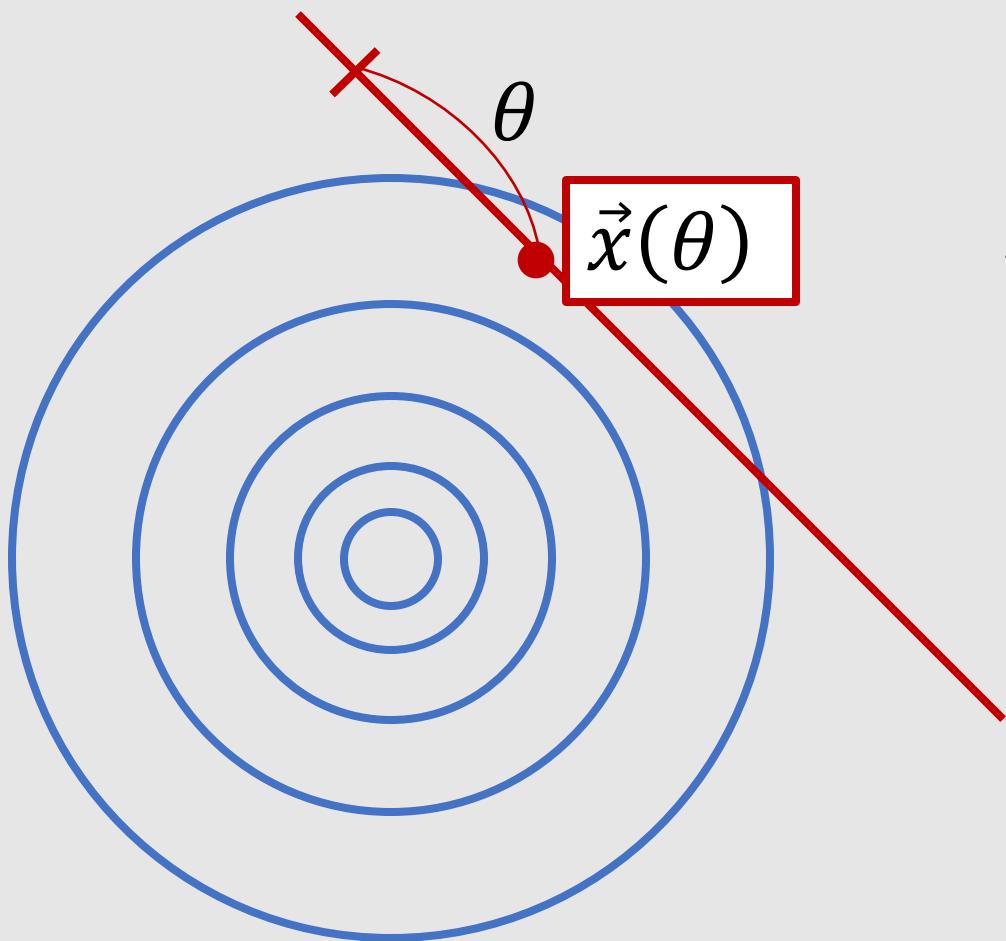
$$\nabla W = \begin{pmatrix} \nabla W_{free} \\ \nabla W_{fix} \end{pmatrix} \quad \nabla^2 W = \begin{bmatrix} \nabla^2 W_{free,free} & \nabla^2 W_{free,fix} \\ \nabla^2 W_{fix,free} & \nabla^2 W_{fix,fix} \end{bmatrix}$$

- Update only $d\vec{x}_{free}$ (while $d\vec{x}_{fix} = 0$) to achieve $\nabla W_{free} = 0$

$$d\vec{x} = \begin{pmatrix} d\vec{x}_{free} \\ d\vec{x}_{fix} \end{pmatrix} = \begin{bmatrix} \nabla^2 W_{free,free} & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix}^{-1} \begin{pmatrix} \nabla W_{free} \\ \mathbf{0} \end{pmatrix}$$

DoF Elimination for General Constraint

Parameterize solution $\vec{x}(\theta)$ such that constraints naturally satisfy



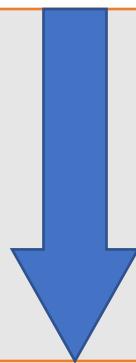
$$\operatorname{argmin}_{\vec{x} \in \{\vec{x} | g(\vec{x})=0\}} W(\vec{x}) \rightarrow \operatorname{argmin}_{\theta} W(\vec{x}(\theta))$$

e.g., $g(\vec{x}) = x + y + 2 = 0$

$$\rightarrow \begin{cases} x = +\theta - 1 \\ y = -\theta - 1 \end{cases}$$

Minimize Parameterized Solution

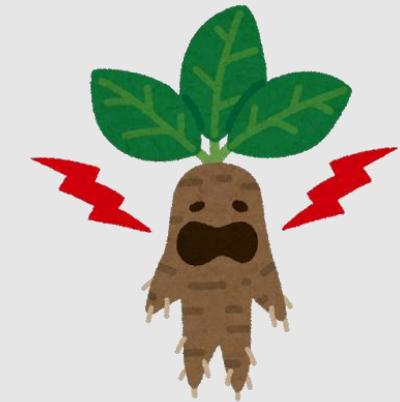
$$\operatorname{argmin}_{\theta} W(\vec{x}(\theta))$$



Newton-Raphson method

$$d\theta = - \left[\frac{\partial^2 W}{\partial \theta^2} \right]^{-1} \left(\frac{\partial W}{\partial \theta} \right)$$

find the **root** of gradient!



$$\frac{\partial W}{\partial \theta} = \frac{\partial W}{\partial \vec{x}} \frac{\partial \vec{x}}{\partial \theta} \text{ and } \frac{\partial^2 W}{\partial \theta^2} = \left(\frac{\partial \vec{x}}{\partial \theta} \right)^T \frac{\partial^2 W}{\partial \vec{x}^2} \left(\frac{\partial \vec{x}}{\partial \theta} \right)$$

DoF Elimination Use Cases

Fixing deformation in XYZ direction

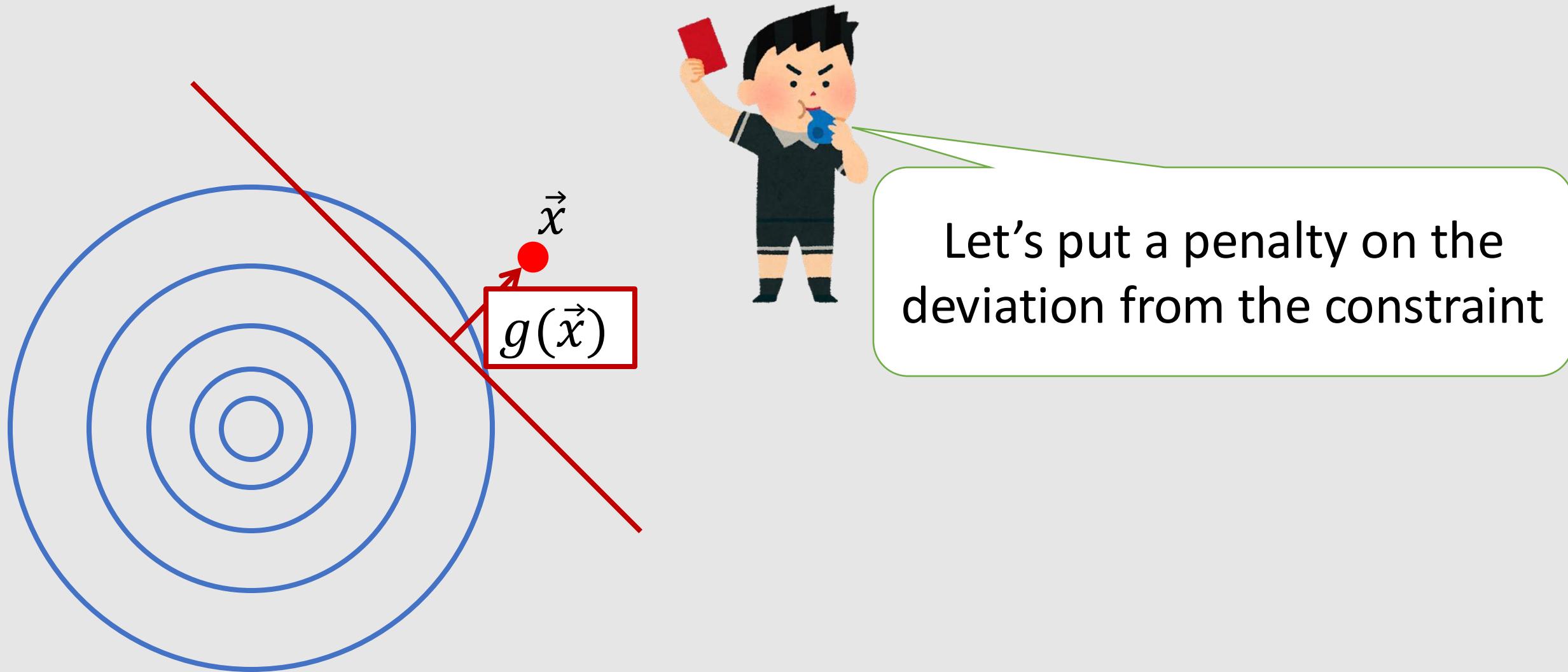
Optimization for rotation

Vortex method for fluid simulation

Penalty Method (Soft Constraint)

ペナルティー法

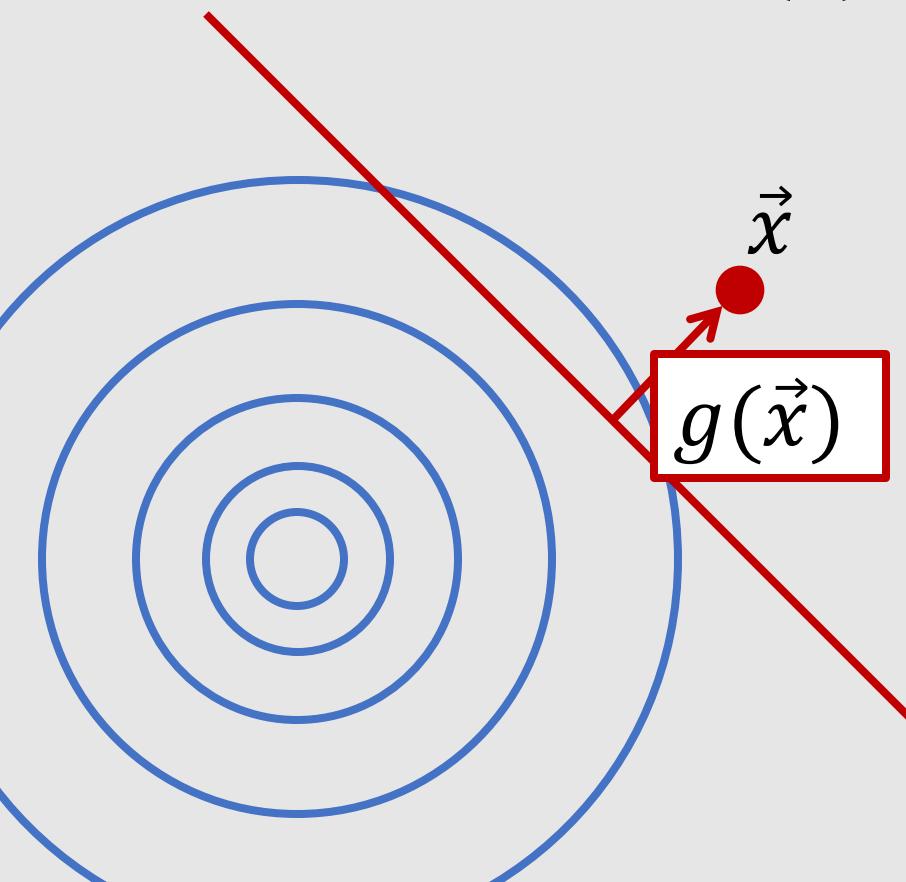
Deviation from Constraints is $g(\vec{x})$



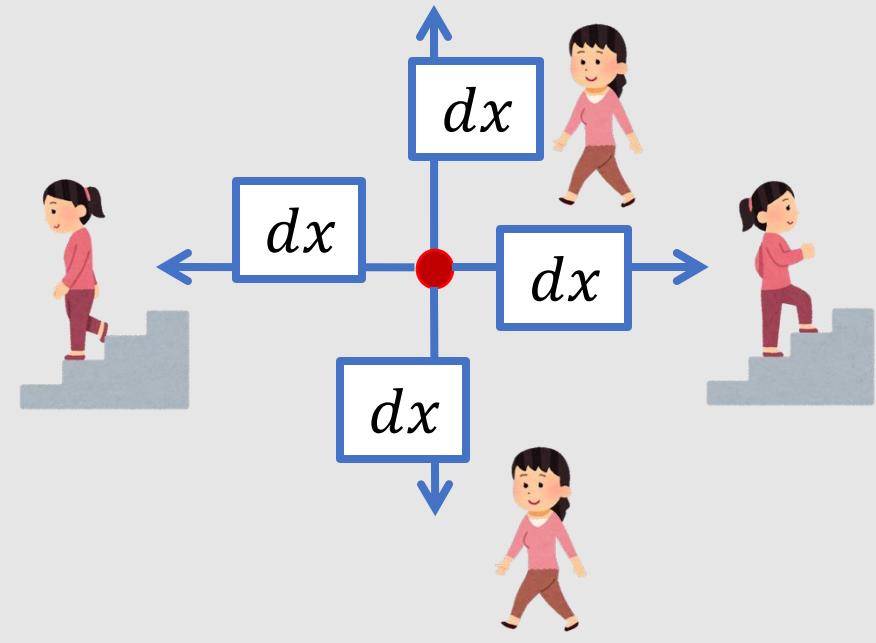
Penalty Method: Constraint as Energy

- Adding additional energy to encourage constraint

minimize $W(\vec{x}) + \alpha g^2(\vec{x})$ If α is large, $g(\vec{x})$ becomes small



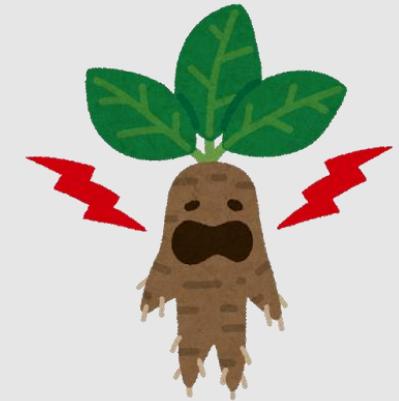
$d\vec{x}$ can be all the direction



Linear System for Penalty Method

$$\underset{\vec{x}}{\operatorname{argmin}} W(\vec{x}) + \alpha g^2(\vec{x})$$

find the **root** of gradient!



Minimize $W + g$ with Newton's method:

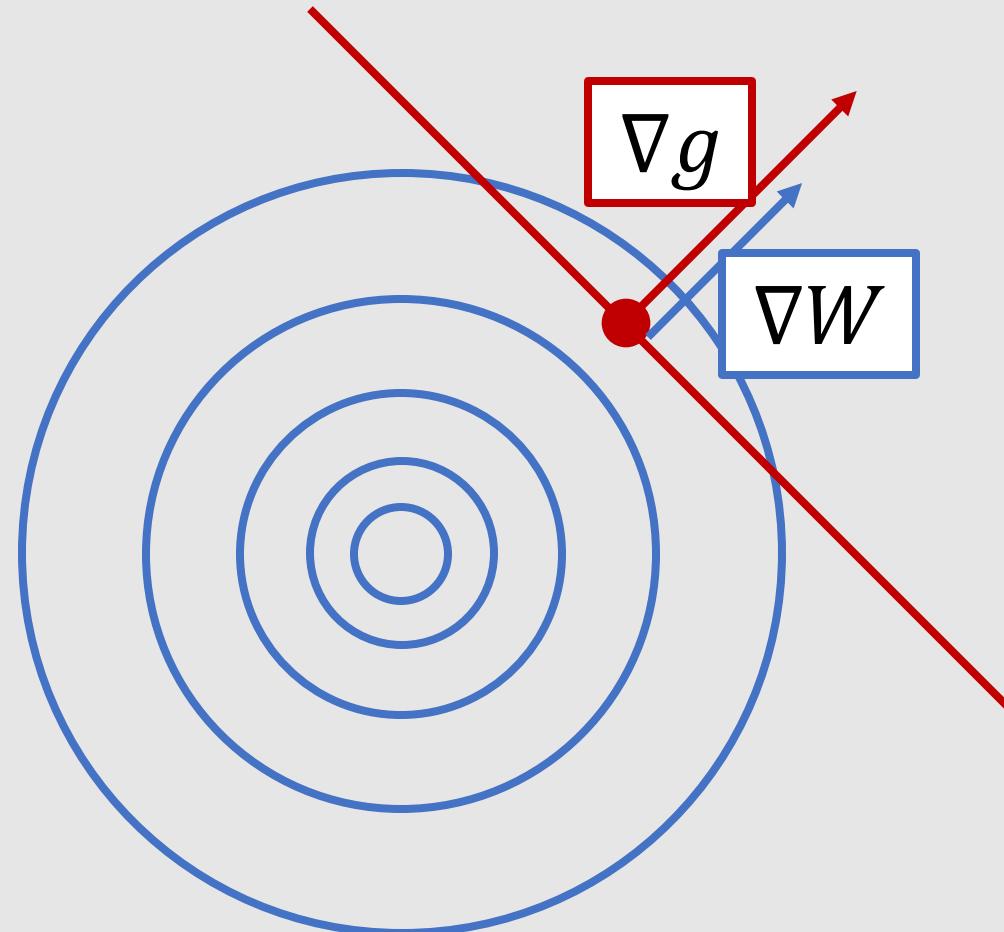
$$d\vec{x} = -[\nabla^2 W + \underbrace{\alpha \nabla^2 g^2}_{2\nabla g \cdot \nabla g + 2\nabla^2 g}]^{-1}(\nabla W + \underbrace{\alpha \nabla g^2}_{2g\nabla g})$$

Lagrange Multiplier Method

ラグランジュ未定乗数法

Lagrange Multiplier Method

- At minimum point, two gradients ∇W , ∇g should be parallel

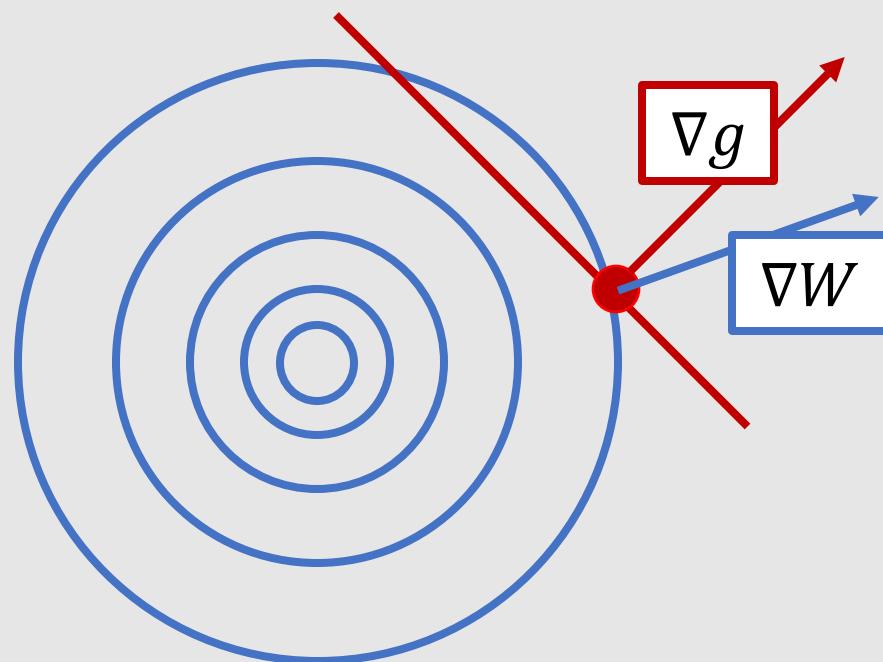
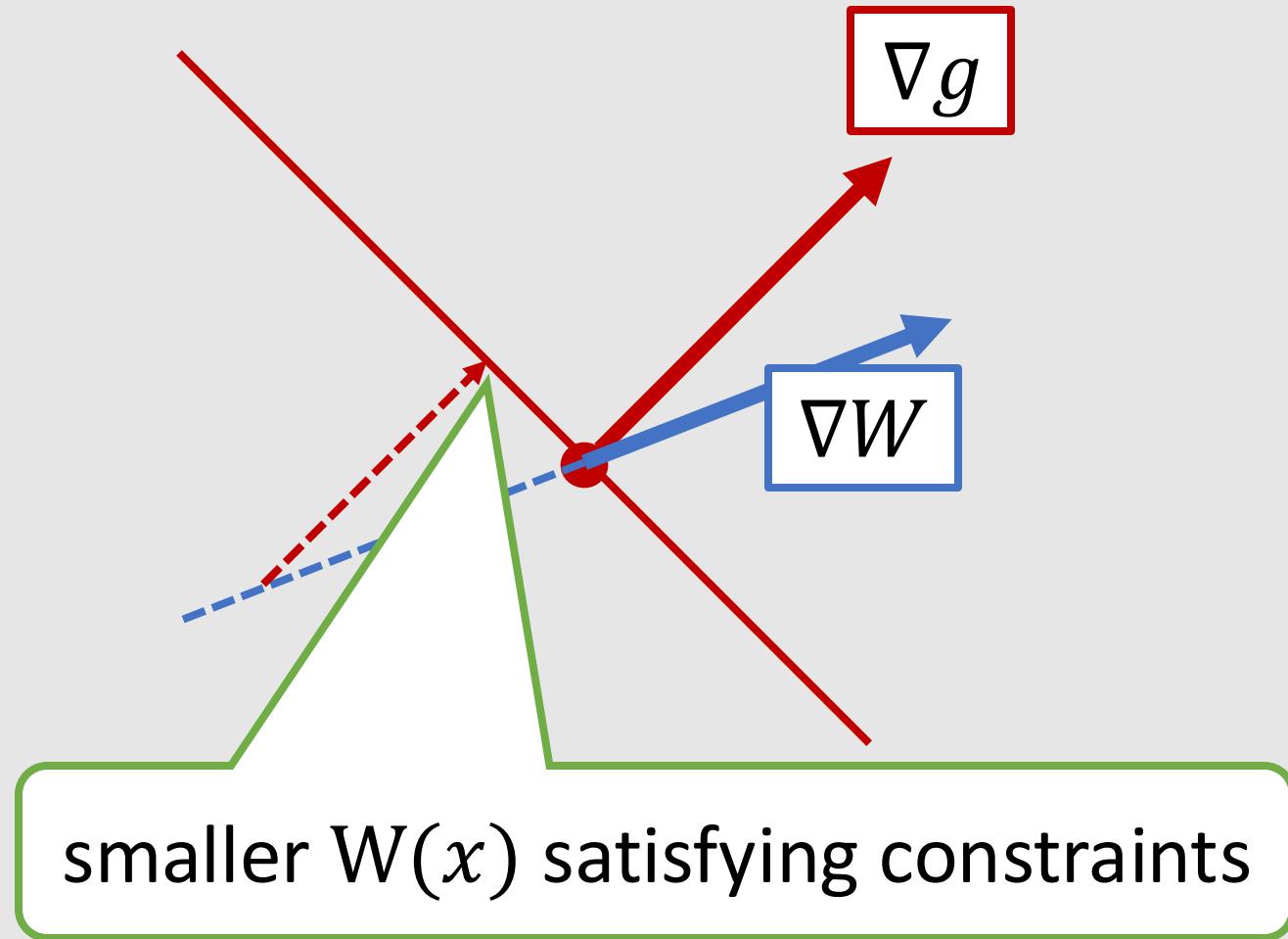


$$\nabla W \parallel \nabla g$$

$$\exists \lambda \neq 0 \text{ s.t. } \nabla W = \lambda \nabla g$$

Why Parallel at Constrained Minimum?

- If $\nabla W, \nabla g$ are **not parallel**, smaller $W(x)$ exists satisfying constraints



Find Saddle Point not Minima for LM Method

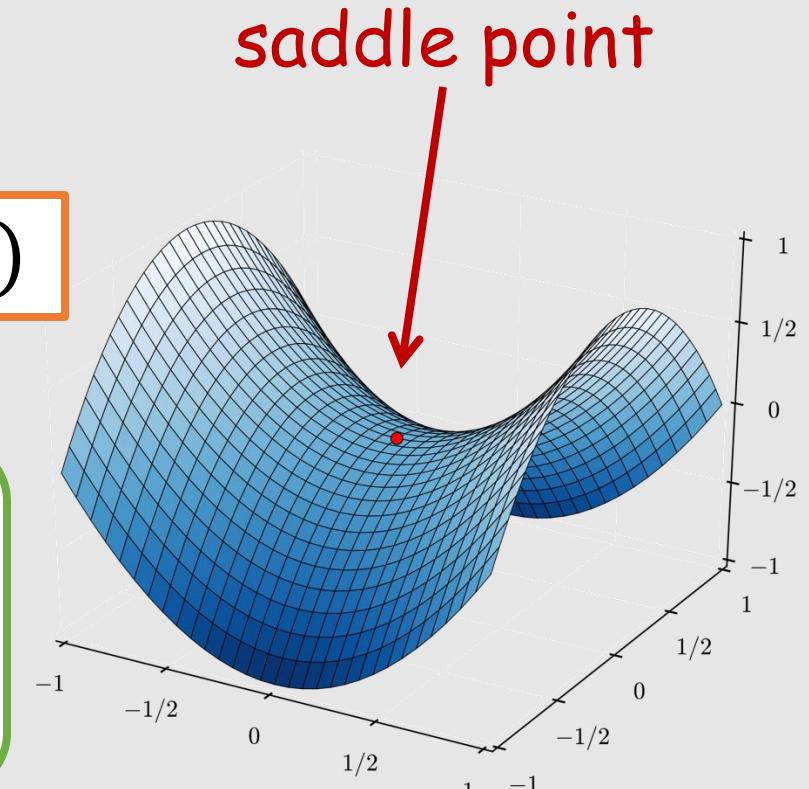
- We changed minimization problem to **saddle point finding problem**

$$\nabla W(\vec{x}) = \lambda \nabla g(\vec{x})$$

↓

$$\nabla \bar{W}(\vec{x}, \lambda) = 0 \text{ where } \bar{W}(\vec{x}, \lambda) = W(\vec{x}) - \lambda g(\vec{x})$$

Don't minimize $\bar{W}(\vec{x}, \lambda)$. Find where the gradient is zero using the **Newton method**



Credit: Nicoguaro @ Wikipedia

Lin. System for Lagrange Multiplier Method

$$\begin{pmatrix} \nabla W(\vec{x}) - \lambda \nabla g(\vec{x}) \\ -g(\vec{x}) \end{pmatrix} = H(\vec{x}, \lambda) = 0$$

Newton-Raphson method

find the root!

$$\begin{pmatrix} d\vec{x} \\ d\lambda \end{pmatrix} = -[\nabla H]^{-1} H$$
$$= - \begin{bmatrix} \nabla^2 W(\vec{x}) - \lambda \nabla^2 g(\vec{x}) & -\nabla g(\vec{x}) \\ -\nabla g(\vec{x})^T & 0 \end{bmatrix} \begin{pmatrix} \nabla W(\vec{x}) - \lambda \nabla g(\vec{x}) \\ -g(\vec{x}) \end{pmatrix}$$

Let's Practice Lagrange Multiplier Method

Maximize $f(x, y) = x + y$ where $g(x, y) = x^2 + y^2 - 1 = 0$

check it out!

