
Numerical Optimization



What is Optimization?

• Find input parameter Ԧ𝑋 where a cost function 𝑊 Ԧ𝑋 is minimized  

Ԧ𝑋𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = argmin
𝑋

𝑊 Ԧ𝑋

Ԧ𝑋𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

Ԧ𝑋

𝐸



Optimization Solve Many Problems 

• What typical computer science paper looks like:

Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a shared shape space for 
multimodal garment design. ACM Trans. Graph. 37, 6, Article 203 (November 2018), 13 pages. 
DOI:https://doi.org/10.1145/3272127.3275074



Solving Constraints v.s. Optimization

Solution should be 
on this line

Solution should be at the 
bottom of this hole



Solving Constraints v.s. Optimization

Solution should be 
on this line

Solution should be at the 
bottom of this hole

There are many 
weapons to fight

𝐴𝑥 = 𝑏

Linearization



Three Optimization Approaches

• Stochastic Optimization
Requires value 𝑊 Ԧ𝑋  

Requires gradient ∇𝑊( Ԧ𝑋)• Gradient Descent

Requires gradient & hessian 

∇𝑊 Ԧ𝑋 , ∇2𝑊 Ԧ𝑋• Newton Method



Stochastic Optimization



Find Minimum by Random Sampling 1

𝑊

Ԧ𝑋

1. Starting from an initial 

guess Ԧ𝑋0

2. Evaluate 𝑊( Ԧ𝑋𝑖) 

Ԧ𝑋𝑖

𝑊(𝑋𝑖) 



Find Minimum by Random Sampling 2 

𝑊

Ԧ𝑋

1. Starting from an initial 

guess Ԧ𝑋0

2. Evaluate 𝑊( Ԧ𝑋𝑖) 
3. Make a candidate 

Ԧ𝑋′𝑖+1 = Ԧ𝑋𝑖 + 𝑅𝑎𝑛𝑑𝑜𝑚

4. Evaluate 𝑊( Ԧ𝑋′𝑖+1)

Ԧ𝑋𝑖

𝑊(𝑋𝑖) 

Ԧ𝑋′𝑖+1

𝑊(𝑋′𝑖+1) 



Find Minimum by Random Sampling 3

𝑊

Ԧ𝑋

1. Starting from an initial 

guess Ԧ𝑋0

2. Evaluate 𝑊( Ԧ𝑋𝑖) 
3. Make a candidate 

Ԧ𝑋′𝑖+1 = Ԧ𝑋𝑖 + 𝑅𝑎𝑛𝑑𝑜𝑚

4. Evaluate 𝑊( Ԧ𝑋′𝑖+1)

5. Move Ԧ𝑋 to the candidate 

if 𝑊 Ԧ𝑋′𝑖+1 < 𝑊( Ԧ𝑋𝑖)

6. Go to 3

Ԧ𝑋𝑖

𝑊(𝑋𝑖) 

Ԧ𝑋𝑖+1

𝑊(𝑋𝑖+1) 

smaller



Simulated Annealing Method

Gradually make the random update small during iteration

Credit: Kingpin13 @ Wikipedia

Make the optimization robust to local minima



Stochastic Optimization: Blinded Golf

• Optimizer do not know the direction & strength to hit

Swing in the 
random direction! 



Gradient Descent Method
最急降下法



Gradient Descent Method

• A.k.a “steepest descent method” or “hill climbing method”

Ԧ𝑋𝑖

𝑊 𝑥 = 20 

W 𝑥 = 10 

𝑊 𝑥 = 5 

∇𝑊( Ԧ𝑋𝑖)
Ԧ𝑋𝑖+1 = Ԧ𝑋𝑖 − 𝛼∇𝑊( Ԧ𝑋𝑖)

Learning rate

∇𝑊
Let’s keep 

going down



Gradient Descent: Blinded Golf with a Guide

• Optimizer know the direction, but do not know strength to hit

Aim that direction! 

OK, but how hard?



Japanese Version of “Pinata”

• Breaking a watermelon with a stick on a beach

Credit: BeenAroundAWhile @ Wikipedia

Move left and hit!



Newton-Raphson Method



What is not Minimum

• A point is not minimum if there is a direction changing 𝑊(𝑥) 

𝑊 𝑥 = 20 

𝑊 𝑥 = 10 

𝑊 𝑥 = 5 This direction 
decreases 𝑊(𝑥) 

This direction 
increase 𝑊(𝑥)
 (opposite direction 
decrease)



What is not Minimum

• A point is not minimum if  ∃𝑑𝑥 ≠ 0 𝑠. 𝑡.  ∇𝑊(𝑥) ⋅ 𝑑𝑥 ≠ 0 

𝑑𝑊 = ∇𝑊 𝑥 ⋅ 𝑑𝑥 < 0

𝑑𝑓 = ∇𝑓 𝑥 ⋅ 𝑑𝑥 > 0

𝑑𝑊

𝑑𝑊

𝑑𝑥

𝑑𝑥



What Might be Minimum: Zero Gradient

∇𝑊 𝑥 = 0 ∇𝑊 𝑥 ≠ 0

This is necessary condition (not sufficient) 

i.e., at least ∇𝑊 𝑥  needs to be zero 
at the minimum

∇𝑊 𝑥 = 0

Find the root 
of ∇𝑊 𝑥



Finding the Root of a Scalar Function

To find 𝑥 where 𝑓(𝑥) = 0

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)

Iterate:

𝑥𝑖

𝑓(𝑥)

𝑥𝑖+1

𝑓′(𝑥𝑖)

𝑓(𝑥)

𝑓(𝑥𝑖)

0



Finding the Root of a Multivariate Function

To find Ԧ𝑥 where Ԧ𝑓( Ԧ𝑥) = 0

Ԧ𝑥𝑖+1 = Ԧ𝑥𝑖 − ∇ Ԧ𝑓( Ԧ𝑥𝑖)
−1

𝑓( Ԧ𝑥𝑖)

Iterate:

Ԧ𝑥𝑖

𝑓(𝑥)

Ԧ𝑥𝑖+1

Ԧ𝑓′( Ԧ𝑥𝑖)

Ԧ𝑓( Ԧ𝑥)

Ԧ𝑓( Ԧ𝑥𝑖)

0

* ∇ Ԧ𝑓( Ԧ𝑥𝑖) need to be invertible

Jacobian matrix



Finding the Root of Gradient ∇𝑊 𝑥 = 0

• Gradient of gradient is called hessian

To find Ԧ𝑥 where ∇𝑊( Ԧ𝑥) = 0

Ԧ𝑥𝑖+1 = Ԧ𝑥𝑖 − ∇2𝑊( Ԧ𝑥𝑖) −1∇𝑊( Ԧ𝑥𝑖)

Iterate:

To find Ԧ𝑥 where Ԧ𝑓( Ԧ𝑥) = 0

Ԧ𝑥𝑖+1 = Ԧ𝑥𝑖 − ∇ Ԧ𝑓( Ԧ𝑥𝑖)
−1

𝑓( Ԧ𝑥𝑖)

Iterate:

Ԧ𝑓 = ∇𝑊

hessian



Gradient Descent: Golf without Blindfold

• Optimizer know the direction & strength to hit

I can swing with 
confidence



Comparison of Three Approaches

Stochastic Optimization

☺ Only evaluation of a 
function is necessary

 Very slow
 Not scalable
 Heuristics

Newton Method

☺  Very fast for almost 
quadratic problem

 Require Hessian
 Complicated Code

Gradient Descent

☺Only gradient is 
necessary

☺  Very scalable

 Slow
 Parameter tuning



Advanced Topics

• Stochastic Optimization
• Metropolis Hasting Method
• Meta-heuristic Optimization (Particle Swarm, Evolutionary Algorithm)

• Gradient Descent
• Stochastic Gradient Descent

• Newton Method
• Levenberg–Marquardt method

• L-BFGS method



Typical Mistakes in Optimization

• Don’t use numerical difference in gradient or Newton method

(∇𝑊)𝑖=
𝑊 Ԧ𝑥 + 𝜖 Ԧ𝑒𝑖 − 𝑊( Ԧ𝑥)

𝜖

Not scalable for large DoFs

𝜖

𝜖

𝑊( Ԧ𝑥)

Inaccurate around convergence

𝜖

𝑊( Ԧ𝑥)



End
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