Numerical Optimization



What is Optimization?

* Find input parameter X where a cost function W()?) IS minimized

E
Ksolution = argLnin W(X) I
X
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Optimization Solve Many Problems

* What typical computer science paper looks like:

a sketch or a parameter sample, and (iii) the reconstruction error
of a parameter sample from itself in an auto-encoder fashion. Thus,

the combined loss function is defined as:
Z(P,M,S) = w1||P = frap(fs2p.(S)|l2 + w2|[[M = fram(fsar(S))ll2

+ w3||M — frap(fpar(P)ll2 + wal|P — frap(fpar(P))ll2,
(1)

where {w1, w2, w3, @4} denote the relative weighting of the individ-
ual errors. We set these weights such that the average gradient of
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Solving Constraints v.s. Optimization

Solution should be
on this line
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bottom of this hole




Solving Constraints v.s. Optimization
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Linearization

There are many

:f,% weapons to fight




Three Optimization Approaches

* Stochastic Optimization

» Requires gradient VIV (X)

* Gradient Descent

Requires gradient & hessian
vw (X), V2w (X)

* Newton Method




Stochastic Optimization
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Find Minimum by Random Sampling 1
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Find Minimum by Random Sampling 2
W,

W&, | (wi) |

3. Make a candidate
X' i1 = X + Random
4. Evaluate W(X i+1)

<




Find Minimum by Random Sampling 3
W,

W&, | |(wi |
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5. Move X to the candidate
if W(X'141) < W)
6. Goto 3




Simulated Annealing Method

Gradually make the random update small during iteration
mmm)> Make the optimization robust to local minima

Credit: Kingpin13 @ Wikipedia



Stochastic Optimization: Blinded Golf

* Optimizer do not know the direction & strength to hit

Swing in the
random direction!




Gradient Descent Method



Gradient Descent Method

* A.k.a “steepest descent method” or “hill climbing method”

Let’s keep
going down




Gradient Descent: Blinded Golf with a Guide

* Optimizer know the direction, but do not know strength to hit

ér

OK, but how hard?

Aim that direction!
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Japanese Version of “Pinata”

* Breaking a watermelon with a stick on a beach

AA Move left and hit!J
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What is not Minimum

* A point is not minimum if there is a direction changing W (x)

©

W(x) =05
W(x) =10
W(x) =20
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This direction

This direction A |increase W (x)

decreases W (x) (opposite direction
decrease)
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What is not Minimum

* A point is not minimum if 3dx # 0 s.t. VIW(x) -dx # 0

dx /)

F \dW dW = VW (x) - dx < 0

<

dx

€
n ‘dW df = VF(x) - dx > 0



What Might be Minimum: Zero Gradient

VIW(x) =0
‘ VW (x) = 0 ‘ VIW(x) # 0 ‘

R a F
L Find the root
of VIW (x)

This is necessary condition (not sufficient)
i.e., at least VIW (x) needs to be zero
at the minimum




Finding the Root of a Scalar Function

LY V.4

£(x) ' (x) |
To find x where f(x) = 0
Iterate: - f(xl)
Xi+1 = X

f(x:)




Finding the Root of a Multivariate Function

f(x)

HED

To find X where f (%) = 0

lterate:

i = 5T ) FG@)

Jacobian matrix

* V£ (%) need to be invertible



Finding the Root of Gradient ViW(x) = 0

* Gradient of gradient is called hessian
f=vw
To find X where f(%) = 0 To find X where VIV (X) = 0
Iterate: Iterate:

- - Cro -1 4
2 = % — V@] F G i = —1vw<»a-)

hessian



Gradient Descent: Golf without Blindfold

* Optimizer know the direction & strength to hit
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Comparison of Three Approaches

Stochastic Optimization

© Only evaluation of a
function is necessary

® Very slow
® Not scalable
@ Heuristics

Gradient Descent

© Only gradient is
necessary
© Very scalable

® Slow
® Parameter tuning

Newton Method

© Very fast for almost
qguadratic problem

® Require Hessian
@® Complicated Code



Advanced Topics

* Stochastic Optimization
* Metropolis Hasting Method
* Meta-heuristic Optimization (Particle Swarm, Evolutionary Algorithm)

* Gradient Descent A
* Stochastic Gradient Descent “_

* Newton Method

* Levenberg—Marquardt method
* L-BFGS method




Typical Mistakes in Optimization

* Don’t use numerical difference in gradient or Newton method

W(x + ee;) — W (x) %
(VW)= ; X

Not scalable for large DoFs Inaccurate around convergence
W(x)
{
o—0
W) €
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