
Matrix Data Structure

Commutative, Associative & Distributive Laws

Associative law

Matrices don’t (always) commute

Commutative law 𝐴 ⊚ 𝐵 = 𝐵 ⊚ 𝐴

𝐴 ⊚ 𝐵 ⊚ 𝐶 = (𝐴 ⊚ 𝐵) ⊚ 𝐶

Distributive law 𝐴 ⊚ 𝐵 + 𝐶 = 𝐴 ⊚ 𝐵 + 𝐴 ⊚ 𝐶

Useful Property of Associative Law

Associative law for matrix: 𝐴 𝐵𝐶 = (𝐴𝐵)𝐶

𝐸 𝐷 𝐶 𝐵 𝐴𝑥 = 𝐸𝐷𝐶𝐵𝐴 𝑥

𝐾

Precompute 𝐾 = 𝐸𝐷𝐶𝐵𝐴 to efficiently compute 𝐾𝑥 for various 𝑥

Quiz: What is an Operator without
Associative Law?

𝐴 ⊚ 𝐵 ⊚ 𝐶 ≠ (𝐴 ⊚ 𝐵) ⊚ 𝐶

Gradient Operator Distributes over Addition

𝑊 = 𝑊1 + 𝑊2 + ⋯ = ෍ 𝑊𝑖

∇𝑊 = ∇𝑊1 + ∇𝑊2 + ⋯ = ෍ ∇𝑊𝑖gradient

∇2𝑊 = ∇2𝑊1 + ∇2𝑊2 + ⋯ = ෍ ∇2𝑊𝑖hessian

Sparsity of a Hessian Matrix: Polyline

∇2𝑊(Ԧ𝑥0, Ԧ𝑥1, Ԧ𝑥2, Ԧ𝑥3) = ∇2𝑊1(Ԧ𝑥0, Ԧ𝑥1) + ∇2𝑊2(Ԧ𝑥1, Ԧ𝑥2) + ∇2𝑊3(Ԧ𝑥2, Ԧ𝑥3)
∗ ∗ 0 0
∗ ∗ 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 ∗ ∗
0 0 ∗ ∗Ԧ𝑥0

Ԧ𝑥1

Ԧ𝑥2

Ԧ𝑥3

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

band matrix

Sparsity of a Hessian Matrix: Edges

Ԧ𝑥0

Ԧ𝑥1

Ԧ𝑥2Ԧ𝑥3

Ԧ𝑥4

∇2𝑊(Ԧ𝑥0, Ԧ𝑥1, Ԧ𝑥2, Ԧ𝑥3, Ԧ𝑥4) = ∇2𝑊′(Ԧ𝑥0, Ԧ𝑥1) + ∇2𝑊′(Ԧ𝑥0, Ԧ𝑥3) + ∇2𝑊′ (Ԧ𝑥1, Ԧ𝑥2)
 +∇2𝑊′ Ԧ𝑥1, Ԧ𝑥3 + ∇2𝑊′ Ԧ𝑥1, Ԧ𝑥4 + ∇2𝑊′ Ԧ𝑥2, Ԧ𝑥4 + ∇2𝑊′(Ԧ𝑥3, Ԧ𝑥4)

∗ ∗ 0 ∗ 0
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 ∗
∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗

For each row, the non-zero pattern is
associated with one-ring neighborhood

Sparsity of a Hessian Matrix: Triangles

Ԧ𝑥0

Ԧ𝑥1

Ԧ𝑥2Ԧ𝑥3

Ԧ𝑥4

∇2𝑊 Ԧ𝑥0, Ԧ𝑥1, Ԧ𝑥2, Ԧ𝑥3, Ԧ𝑥4 =
 ∇2𝑊′ Ԧ𝑥0, Ԧ𝑥3, Ԧ𝑥1 + ∇2𝑊′ Ԧ𝑥1, Ԧ𝑥3, Ԧ𝑥4 + ∇2𝑊′(Ԧ𝑥1, Ԧ𝑥4, Ԧ𝑥2)

∗ ∗ 0 ∗ 0
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 ∗
∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗

For each row, the non-zero pattern is
associated with one-ring neighborhood

Sparse Matrix is Common in Optimization

• FEM,FDM produce a very sparse matrix (e.g., 30 entries par row)

(Wikipedia: Sparse Matrix)

Constructing One-Ring Neighborhood Graph

element index vertex index

element to vertex array: 𝑓𝑒→𝑣

(regular 2D array)

1. vertex to element array: 𝑔𝑣→𝑒

 (jagged array, inverse of 𝑓𝑒→𝑣)
2. one-ring neighborhood:

ℎ𝑣→𝑣 ∶ 𝑓𝑣→𝑒(𝑔𝑣→𝑒 𝑣)
 (jagged array)

ℎ𝑣→𝑣

Coordinate (COO) Data Structure

• A.k.a triplet format, 3-tuple format

• Interface for matrix libraries (e.g., Pytorch, Eigen)

A=

𝑎 0 0 𝑏 0
0 𝑐 0 0 𝑑
0 0 𝑒 0 0
𝑓 0 0 𝑔 0
0 ℎ 0 0 𝑖

Value Row Column

a 0 0

b 0 3

c 1 1

d 1 4

… … …

We are triplet!

Compressed Sparse Row (CSR) Data Structure

• Data structure for efficient matrix-vector product using jagged array

A=

𝑎 0 0 𝑏 0
0 𝑐 0 0 𝑑
0 0 𝑒 0 0
𝑓 0 0 𝑔 0
0 ℎ 0 0 𝑖

0 2 4 5 7 9B =indexes of C&D:

0 3 1 4 2 0 3 41

0 1 2 3 4 5 6 7 8

C =

a b c d e f g ihD =

9

column Index:

value:

A[i][C[B[i]+k]] = D[B[i]+k]

	Slide 1: Matrix Data Structure
	Slide 2: Commutative, Associative & Distributive Laws
	Slide 3: Useful Property of Associative Law
	Slide 4: Quiz: What is an Operator without Associative Law?
	Slide 5: Gradient Operator Distributes over Addition
	Slide 6: Sparsity of a Hessian Matrix: Polyline
	Slide 7: Sparsity of a Hessian Matrix: Edges
	Slide 8: Sparsity of a Hessian Matrix: Triangles
	Slide 9: Sparse Matrix is Common in Optimization
	Slide 10: Constructing One-Ring Neighborhood Graph
	Slide 11: Coordinate (COO) Data Structure
	Slide 12: Compressed Sparse Row (CSR) Data Structure

