Linear System Solver



Adjacency Matrix

* Connected edges takes 1 in the matrix
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Graph Laplacian Matrix

* All the connected edges takes -1 and diagonal takes valence
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Solving Constraints v.s. Optimization

Solution should be
on this line
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Graph Laplacian Matrix as Constraints

* Lv = 0 means all the vertices are average of connected ones
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Graph Laplacian Matrix as Optimization

e Lv = 0 means sum of square difference is minimized
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Diagonally Dominant Matrix

* Magnitude of diagonal element is larger than the sum of the
magnitude of off-diagonal elements
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Linear system with diagonally dominant
matrix should be easy to solve




Types of Linear Solver

Direct Method
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~Compute the solution in

e Gaussian elimination
* LU decomposition

Classical Iterative Methods
e Jacobi method
e Gauss-Seidel method

Krylov Subspace Method
* Conjugate gradient method

a fixed procedure

— Update the solution iteratively

> Faster than the classical method
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LU Decomposition



Triangular Matrix
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Forward Substitution

* It is very easy to solve linear system for triangular matrix
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Solving Linear System: LU Decomposition

LU Decomposition

A% =b A=LU
: b let ¥ = UX, then Ly = b
y

A

1.Solve Ly = b using forward substitution @ =
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2. Solve Ux = y using backward substitution
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Block LU Decomposition
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LDU Decomposition of 1st Row/Column
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LDU Decomposition of 2nd Row/Column
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LDU Decomposition
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Classical Iterative Solver



Gauss-Seidel Method

* Solve & update solution x row-by-row
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Gauss-Seidel Method in a Grid

Only | can move to satisfy
(‘ constraint or to minimize energy p
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Jacobi Method

1. Solve each row independently to obtain x’

aiq Ao Ai1n —xl- _bl_ ]_> aA11X1 —+ A12X> i AnXn = b1
A1 Az *° Azpn ||X2 b,

| m) X1 = (b1 — A% — =" — A1pnXp)/A11

[\anl Ano a’TlTl/ | Xn | —le— \

A1 X1+ ApoXy + -+ ApnXy = by,

- xn’ = (bn — Ap1Xqy — AppXy — )/ann

2. Update solution at the same time as x = x’



Stencil of a 2D Regular Grid

e Stencil represents the diagonal & off-
diagonal component of matrix for a row

O graph Laplacian stencil
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Red-Black Ordering for Regular Grid

* The data of same color can be processed in any order (no-
synchronization is necessary for parallel computation)

Process all the black
points in parallel

Process all the red points
in parallel

Synchronize threads




Krylov Subspace Method



Top 10 Algorithms of the 20 Century

* 1946: The Metropolis Algorithm for Monte Carlo.

e 1947: Simplex Method for Linear Programming.

* 1950: Krylov Subspace Iteration Method.

* 1951: The Decompositional Approach to Matrix Computations.
* 1957: The Fortran Optimizing Compiler.

e 1959: QR Algorithm for Computing Eigenvalues.

e 1962: Quicksort Algorithms for Sorting.

e 1965: Fast Fourier Transform.

* 1977: Integer Relation Detection.
e 1987: Fast Multipole Method

Jack Dongarra, Francis Sullivan, “Top Ten Algorithms of the Century”, Computing in Science and Engineering,
Volume 2, Number 1, January/February 2000, pages 22-23.



What is Krylov Subspace?

* Space spanned by a vector and its matrix multiplications
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What is Krylov Subspace Method?

* Finding the best solution of a linear system in the Krylov subspace

‘ What is the criteria
5 for the solution?

Pl

- Best solution!
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What is Conjugate Gradient (CG) Method?

* Given a symmetric positive definite matrix A, the solution of
AX =7 minimize W(x) = 1/2xTAx — TR

A—17—; unknown true
O solution

best solution in K to
minimize W (x)




Symmetric Positive Definite Matrix

*(x,v), = xT Ay has the property of inner product

1. (Xl + xz,y>A — <x1;y>A T <x2;3’>A
2. {ax,y)s = alx, V)4

3. )4 =V, X)4
4. (x,y)4=0,and (x,x), =0=>x=0



Symmetric Positive Definite Matrix

* All eigenvalues are positive, the eigenvectors are orthogonal

A = RART

Unit circle in Unit circle in
(*,%) 4 Space Euclidean space

1
\ y = A2RTx
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orthogonal in 1 orthogonal in
(*,%)4 space X =RA 2y Euclidean space



What is Conjugate Gradient (CG) Method?

* Given a symmetric positive definite matrix A, the solution of
AX =7 minimize W(x) = 1/2xTAx — TR

A—17—; unknown true
O solution

best solution in K to
minimize W (x)




A-Orthogonal Projection of the Solution
Find %, s.t. (DA™Y — X%V, =D - (7 —AX%,) =0
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A-Orthogonal Projection on a Search Line
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Poor Convergence of the Gradient Descent

* ® We cannot simply move along the residual 7, = dW /dx,

The solution goes
Jig-zag, seems
" not very efficient




Next Search Line is Chosen A-Orthogonal
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Conjugate Gradient Method Algorithm
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Comparisons of Linear Solver

Direct Method * © Solve most non-singular matrices
e Gaussian elimination - * @ Costly for large matrix
LU decomposition * @ Cost is same for easy matrices

Classical Iterative Methods * © Simple implementation
* Jacobi method - e © Cost is low for easy matrix
* Gauss-Seidel method * @ Only for very easy matrix

* © Simple implementation
© Faster than classical method
© More robust than classical method

Krylov Subspace Method
* Conjugate gradient method
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