
Linear System Solver
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Adjacency Matrix

• Connected edges takes 1 in the matrix
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Ԧ𝑥0

Ԧ𝑥1

Ԧ𝑥2Ԧ𝑥3

A =

0 1 0 1 0
1 0 1 1 1
0 1 0 0 1
1 1 0 0 1
0 1 1 1 0

Ԧ𝑥4



Graph Laplacian Matrix

• All the connected edges takes -1 and diagonal takes valence
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Ԧ𝑥0

Ԧ𝑥1

Ԧ𝑥2Ԧ𝑥3

𝐿 =

2 −1 0 −1 0
−1 4 −1 −1 −1
0 −1 2 0 −1

−1 −1 0 3 −1
0 −1 −1 −1 3

Ԧ𝑥4 valence: # of connected points



Solving Constraints v.s. Optimization

Solution should be 
on this line

Solution should be at the 
bottom of this hole



Graph Laplacian Matrix as Constraints

• 𝐿 Ԧ𝑣 = 0 means all the vertices are average of connected ones 
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Ԧ𝑥0

Ԧ𝑥1

Ԧ𝑥2Ԧ𝑥3

𝐿 Ԧ𝑣 = 0

⟹

2 −1 0 −1 0
−1 4 −1 −1 −1
0 −1 2 0 −1

−1 −1 0 3 −1
0 −1 −1 −1 3

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

= 0

Ԧ𝑥4



Graph Laplacian Matrix as Optimization

• 𝐿 Ԧ𝑣 = 0 means sum of square difference is minimized
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Ԧ𝑥0

Ԧ𝑥1

Ԧ𝑥2Ԧ𝑥3

Ԧ𝑥4

𝑊 =
1

2
෍

𝑒⊂ℰ

𝑣𝑒1
− 𝑣𝑒2

2

=
1

2
Ԧ𝑣𝑇𝐿 Ԧ𝑣

𝑊 is minimized → 
𝜕𝑊

𝜕𝑣
= 𝐿 Ԧ𝑣 = 0



Diagonally Dominant Matrix

• Magnitude of diagonal element is larger than the sum of the 
magnitude of off-diagonal elements
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𝐴𝑖𝑖 ≥ ෍

𝑗≠𝑖

𝐴𝑖𝑗

Linear system with diagonally dominant 
matrix should be  easy to solve 

A =

2 −1 0 −1 0
−1 4 −1 −1 −1
0 −1 2 0 −1

−1 −1 0 3 −1
0 −1 −1 −1 3



Types of Linear Solver
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Krylov Subspace Method
• Conjugate gradient method

Classical Iterative Methods
• Jacobi method
• Gauss-Seidel method

Direct Method
• Gaussian elimination
• LU decomposition

Update the solution iteratively

Compute the solution in 
a fixed procedure

Faster than the classical method



LU Decomposition
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Triangular Matrix
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lower triangle matrix upper triangle matrix



Forward Substitution

• It is very easy to solve linear system for triangular matrix
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𝐿 Ԧ𝑥 = 𝑏



Solving Linear System:  LU Decomposition
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𝐴 Ԧ𝑥 = 𝑏 𝐴 = 𝐿𝑈

𝐿𝑈 Ԧ𝑥 = 𝑏

LU Decomposition

Let Ԧ𝑦 = 𝑈 Ԧ𝑥, then 𝐿 Ԧ𝑦 = 𝑏
Ԧ𝑦

1. Solve 𝐿 Ԧ𝑦 = 𝑏 using forward substitution

2. Solve 𝑈 Ԧ𝑥 = Ԧ𝑦 using backward substitution



Block LU Decomposition
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𝐴 𝐵
𝐶 𝐸

=
𝐼 0

𝐶𝐴−1 𝐼
𝐴 𝐵
0 𝐸 − 𝐶𝐴−1𝐵

=
𝐼 0

𝐶𝐴−1 𝐼
𝐴 0
0 𝐸 − 𝐶𝐴−1𝐵

𝐼 𝐴−1𝐵
0 𝐼

Schur compliment

Let’s split a cake! 



LDU Decomposition of 1st Row/Column
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𝑎0 𝑏0
𝑇

Ԧ𝑐0 𝐸0

=
1 0
ΤԦ𝑐0 𝑎0 𝐼

𝑎0 0

0 𝐸0 − ൗԦ𝑐0𝑏0
𝑇 𝑎0

1 ൗ𝑏0
𝑇 𝑎0

0 𝐼

𝐿0 𝑈0
𝑎1 𝑏1

𝑇

Ԧ𝑐1 𝐸1𝐿0

𝑈0

𝐷0

𝐷0



LDU Decomposition of 2nd Row/Column
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𝑎0 𝑏0
𝑇

Ԧ𝑐0 𝐸0

=
1 0
ΤԦ𝑐0 𝑎0 𝐼

𝑎0 0

0
𝑎1 𝑏1

𝑇

Ԧ𝑐1 𝐸1

1 ൗ𝑏0
𝑇 𝑎0

0 𝐼

𝐿0 𝑈0

𝑎0 0

0
1 0

Ԧ𝑐1/𝑎1 𝐼

𝑎0 0

0
𝑎1 0

0 𝐸1 − Ԧ𝑐1𝑏1
𝑇/𝑎1

𝑎0 0

0 1 𝑏1
𝑇/𝑎1

0 𝐼

𝐿1 𝑈1

𝐿0

𝑈0

𝐷1

𝐿1

𝑈1



LDU Decomposition
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𝑎0 𝑏0
𝑇

Ԧ𝑐0 𝐸0

= 𝐿0𝐿1 ⋯ 𝐿𝑛

𝑎0

𝑎1

⋱
𝑎𝑛

𝑈0𝑈1 ⋯ 𝑈𝑛

𝐿 𝑈

𝐷



Classical Iterative Solver
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Gauss-Seidel Method
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• Solve & update solution 𝒙 row-by-row

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

𝑥1

𝑥2

⋮
𝑥𝑛

=

𝑏1

𝑏2

⋮
𝑏𝑛

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑥1 = (𝑏1 − 𝑎12𝑥2 − ⋯ − 𝑎1𝑛𝑥𝑛)/𝑎11

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

𝑥𝑛 = (𝑏𝑛 − 𝑎𝑛1𝑥1 − 𝑎𝑛2𝑥2 − ⋯ )/𝑎𝑛𝑛



Gauss-Seidel Method in a Grid
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Only I can move to satisfy 
constraint or to minimize energy

It’s my turn !



Jacobi Method

2. Update solution at the same time as 𝒙 = 𝒙′ 
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𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

𝑥1

𝑥2

⋮
𝑥𝑛

=

𝑏1

𝑏2

⋮
𝑏𝑛

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑥1′ = (𝑏1 − 𝑎12𝑥2 − ⋯ − 𝑎1𝑛𝑥𝑛)/𝑎11

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

𝑥𝑛′ = (𝑏𝑛 − 𝑎𝑛1𝑥1 − 𝑎𝑛2𝑥2 − ⋯ )/𝑎𝑛𝑛

1. Solve each row independently to obtain 𝒙′



Stencil of a 2D Regular Grid
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credit: bukk @ wikipedia

stencil in real life

0 −1 0
−1 4 −1
0 −1 0

graph Laplacian stencil

• Stencil represents the diagonal & off-
diagonal component of matrix for a row

diagonal component



Red-Black Ordering for Regular Grid

• The data of same color can be processed in any order (no-
synchronization is necessary for parallel computation)
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Process all the black 
points in parallel

Synchronize threads

Process all the red points 
in parallel

Synchronize threads



Krylov Subspace Method
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Top 10 Algorithms of the 20 Century 

• 1946: The Metropolis Algorithm for Monte Carlo.

• 1947: Simplex Method for Linear Programming.

• 1950: Krylov Subspace Iteration Method.

• 1951: The Decompositional Approach to Matrix Computations.

• 1957: The Fortran Optimizing Compiler.

• 1959: QR Algorithm for Computing Eigenvalues.

• 1962: Quicksort Algorithms for Sorting.

• 1965: Fast Fourier Transform.

• 1977: Integer Relation Detection.

• 1987: Fast Multipole Method
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Jack Dongarra, Francis Sullivan, “Top Ten Algorithms of the Century”,  Computing in Science and Engineering,

Volume 2, Number 1, January/February 2000, pages 22-23.



What is Krylov Subspace?

• Space spanned by a vector and its matrix multiplications
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𝒦𝑘 = Ԧ𝑟, 𝐴 Ԧ𝑟, 𝐴2 Ԧ𝑟, ⋯ , 𝐴𝑘−1 Ԧ𝑟

𝒦2

Ԧ𝑟

𝐴 Ԧ𝑟



What is Krylov Subspace Method?

• Finding the best solution of a linear system in the Krylov subspace
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𝒦2

Ԧ𝑟

𝐴 Ԧ𝑟

Best solution!

What is the criteria 
for the solution?

Ԧ𝑥2



What is Conjugate Gradient (CG) Method?
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𝒦2

Ԧ𝑟

𝐴 Ԧ𝑟

best solution in 𝒦2 to 
minimize 𝑊 Ԧ𝑥

• Given a symmetric positive definite matrix 𝐴, the solution of 
𝐴 Ԧ𝑥 = Ԧ𝑟  minimize 𝑊 𝑥 = Τ1 2 Ԧ𝑥𝑇𝐴 Ԧ𝑥 − Ԧ𝑟𝑇 Ԧ𝑥

unknown true 
solution

𝐴−1 Ԧ𝑟

Ԧ𝑥2



Symmetric Positive Definite Matrix
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• 𝑥, 𝑦 𝐴 = 𝑥𝑇𝐴𝑦 has the property of inner product 

1. 𝑥1 + 𝑥2, 𝑦 𝐴 = 𝑥1, 𝑦 𝐴 + 𝑥2, 𝑦 𝐴

2. 𝛼𝑥, 𝑦 𝐴 = 𝛼 𝑥, 𝑦 𝐴

3. 𝑥, 𝑦 𝐴 = 𝑦, 𝑥 𝐴

4. 𝑥, 𝑦 𝐴 ≥ 0, and 𝑥, 𝑥 𝐴 = 0 ⟹ 𝑥 = 0



Symmetric Positive Definite Matrix
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𝐴 = 𝑅Λ𝑅𝑇

Unit circle in 
∗,∗ 𝐴 space

• All eigenvalues are positive, the eigenvectors are orthogonal 

orthogonal in
∗,∗ 𝐴 space 

𝑦 = Λ
1
2𝑅𝑇𝑥

Unit circle in 
Euclidean space

orthogonal in 
Euclidean space 𝑥 = 𝑅Λ−

1
2𝑦



What is Conjugate Gradient (CG) Method?
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𝒦2

Ԧ𝑟

𝐴 Ԧ𝑟

best solution in 𝒦2 to 
minimize 𝑊 Ԧ𝑥

• Given a symmetric positive definite matrix 𝐴, the solution of 
𝐴 Ԧ𝑥 = Ԧ𝑟  minimize 𝑊 𝑥 = Τ1 2 Ԧ𝑥𝑇𝐴 Ԧ𝑥 − Ԧ𝑟𝑇 Ԧ𝑥

unknown true 
solution

𝐴−1 Ԧ𝑟

Ԧ𝑥2



A-Orthogonal Projection of the Solution
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𝒦2

Ԧ𝑟

𝐴 Ԧ𝑟

best solution in 𝒦2 to 
minimize 𝑊 Ԧ𝑥

unknown true solution

𝐴−1 Ԧ𝑟

Ԧ𝑥2

𝐴−1 Ԧ𝑟 − Ԧ𝑥2

Ԧ𝑝 ∈ 𝒦2

𝐹𝑖𝑛𝑑 Ԧ𝑥𝑘 𝑠. 𝑡. Ԧ𝑝, 𝐴−1 Ԧ𝑟 − Ԧ𝑥𝑘 𝐴 = Ԧ𝑝 ⋅ ( Ԧ𝑟 − 𝐴 Ԧ𝑥𝑘) = 0

Ԧ𝑟𝑘 = Τ𝜕𝑊 𝜕 Ԧ𝑥𝑘



A-Orthogonal Projection on a Search Line
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Ԧ𝑥𝑘 Ԧ𝑥𝑘+1 Ԧ𝑝𝑘

Ԧ𝑥𝑘+1 ≔ Ԧ𝑥𝑘 + 𝛼𝑘 Ԧ𝑝𝑘

Ԧ𝑝𝑘 , 𝐴−1 Ԧ𝑟 − Ԧ𝑥𝑘+1 𝐴 = Ԧ𝑝𝑘 ⋅ Ԧ𝑟𝑘+1 = 0

𝛼𝑘 Ԧ𝑝𝑘

𝛼𝑘 ≔
Ԧ𝑟𝑘+1

𝑇 Ԧ𝑟𝑘+1

Ԧ𝑝𝑘
𝑇𝐴 Ԧ𝑝𝑘Ԧ𝑟𝑘+1



Poor Convergence of the Gradient Descent
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Ԧ𝑥𝑘 Ԧ𝑥𝑘+1Ԧ𝑟𝑘

Ԧ𝑟𝑘+1

Ԧ𝑟𝑘+2

Ԧ𝑟𝑘+3

Ԧ𝑟𝑘+4

• We cannot simply move along the residual Ԧ𝑟𝑘 = Τ𝜕𝑊 𝜕 Ԧ𝑥𝑘

The solution goes 
jig-zag, seems 

not very efficient
Ԧ𝑥𝑘+2



Next Search Line is Chosen A-Orthogonal

34Ԧ𝑥𝑘+1 Ԧ𝑝𝑘

Ԧ𝑝𝑘+1 ≔ Ԧ𝑟𝑘+1 + 𝛽𝑘 Ԧ𝑝𝑘

Ԧ𝑟𝑘+1

Ԧ𝑝𝑘+1

Ԧ𝑝𝑘+1, Ԧ𝑝𝑘 𝐴 = 0

𝛽𝑘 ≔ −
Ԧ𝑟𝑘+1

𝑇 𝐴 Ԧ𝑝𝑘

Ԧ𝑝𝑘
𝑇𝐴 Ԧ𝑝𝑘

=
Ԧ𝑟𝑘+1

𝑇 Ԧ𝑟𝑘+1

Ԧ𝑟𝑘
𝑇 Ԧ𝑟𝑘



Conjugate Gradient Method Algorithm
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Ԧ𝑟0 = Ԧ𝑝0 = Ԧ𝑟
Ԧ𝑥0 = 0
for(k=0;k<k_max;++k){

 𝛼𝑘 ≔
Ԧ𝑟𝑘

𝑇 Ԧ𝑟𝑘

Ԧ𝑝𝑘
𝑇𝐴 Ԧ𝑝𝑘

 Ԧ𝑥𝑘+1 ≔ Ԧ𝑥𝑘 + 𝛼𝑘 Ԧ𝑝𝑘

 Ԧ𝑟𝑘+1 ≔ Ԧ𝑟𝑘 − 𝛼𝑘𝐴 Ԧ𝑝𝑘

 𝛽𝑘 ≔
Ԧ𝑟𝑘+1

𝑇 Ԧ𝑟𝑘+1

Ԧ𝑟𝑘
𝑇 Ԧ𝑟𝑘

 Ԧ𝑝𝑘+1 ≔ Ԧ𝑟𝑘+1 + 𝛽𝑘 Ԧ𝑝𝑘

}

A-projection of the true 
solution on a search line

A-orthogonalization of 
the search line



Comparisons of Linear Solver
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Direct Method
• Gaussian elimination
• LU decomposition

• ☺ Solve most non-singular matrices
•  Costly for large matrix
•  Cost is same for easy matrices

Classical Iterative Methods
• Jacobi method
• Gauss-Seidel method

• ☺ Simple implementation
• ☺ Cost is low for easy matrix 
•  Only for very easy matrix

Krylov Subspace Method
• Conjugate gradient method

• ☺ Simple implementation
• ☺ Faster than classical method
• ☺ More robust than classical method
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