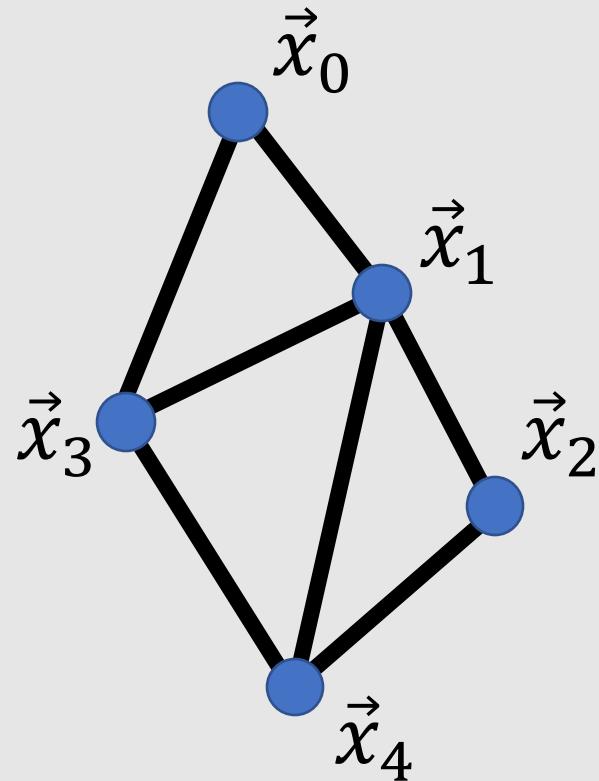


Linear System Solver

Adjacency Matrix

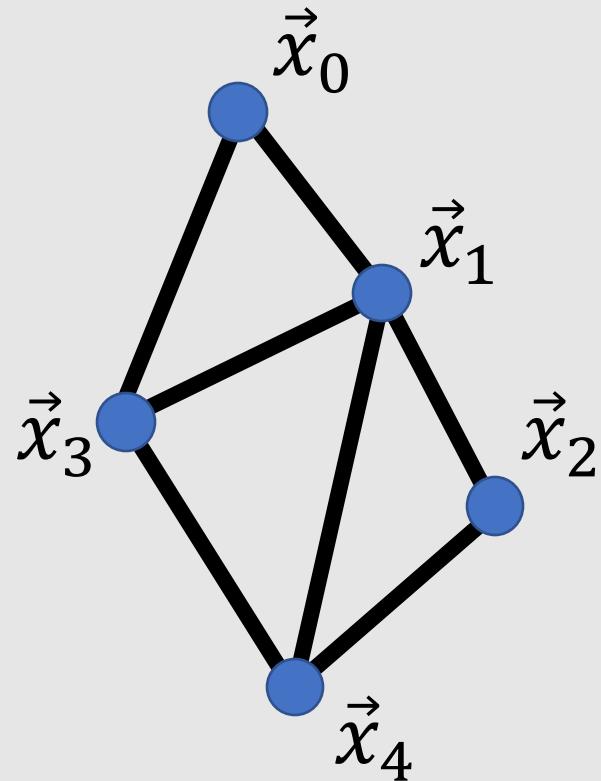
- Connected edges takes 1 in the matrix



$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Graph Laplacian Matrix

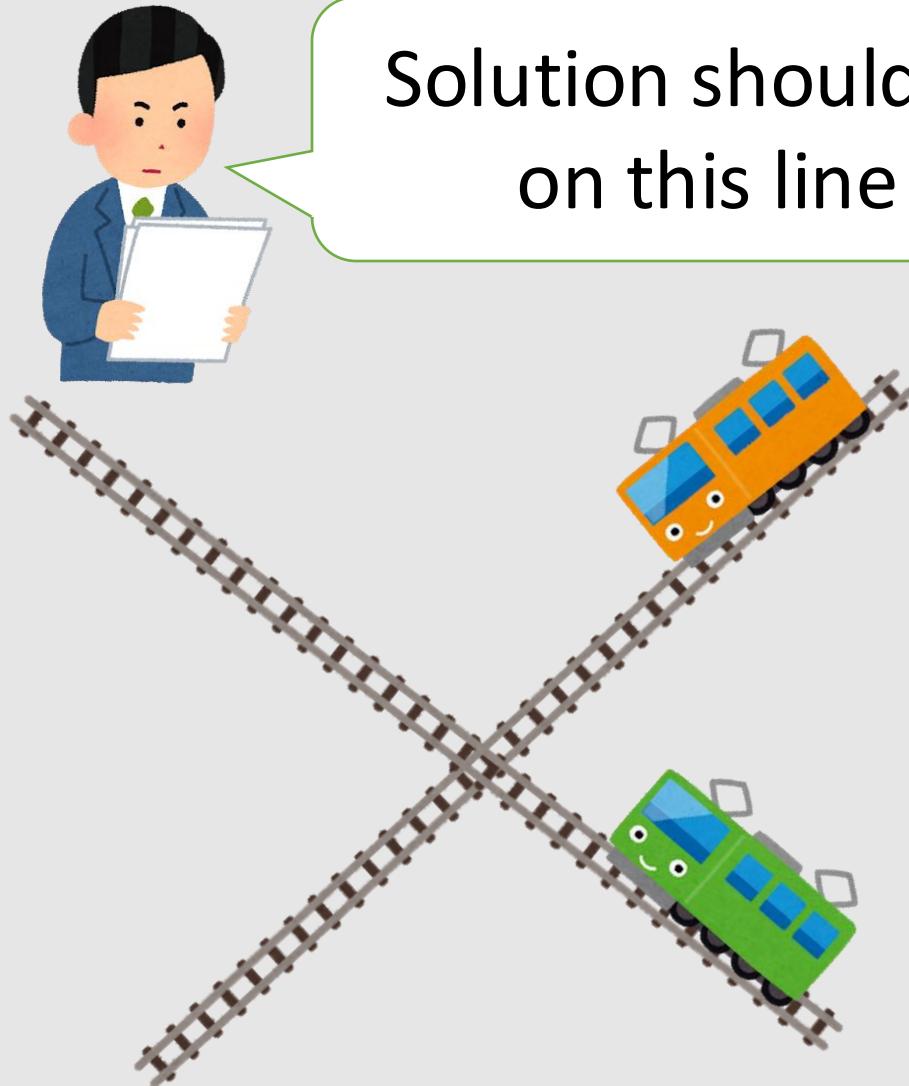
- All the connected edges takes -1 and diagonal takes **valence**



$$L = \begin{bmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ 0 & -1 & 2 & 0 & -1 \\ -1 & -1 & 0 & 3 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

valence: # of connected points

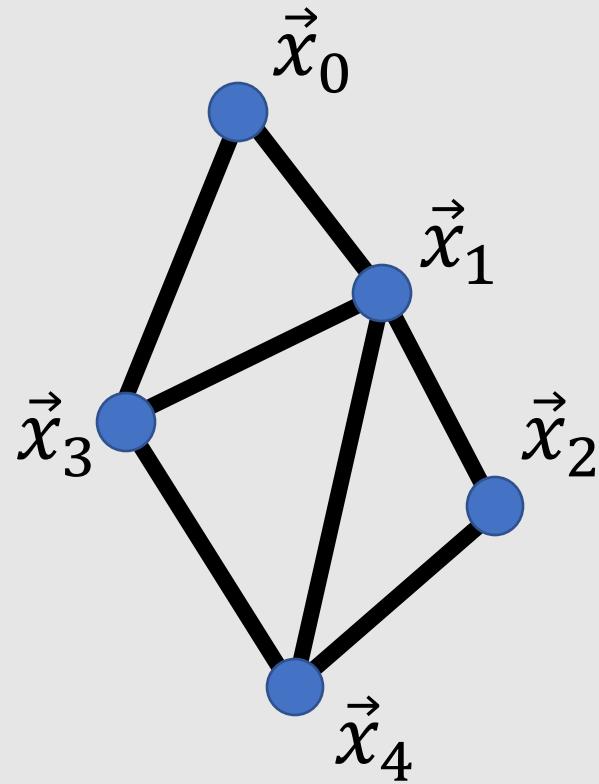
Solving Constraints v.s. Optimization



Solution should be at the bottom of this hole

Graph Laplacian Matrix as **Constraints**

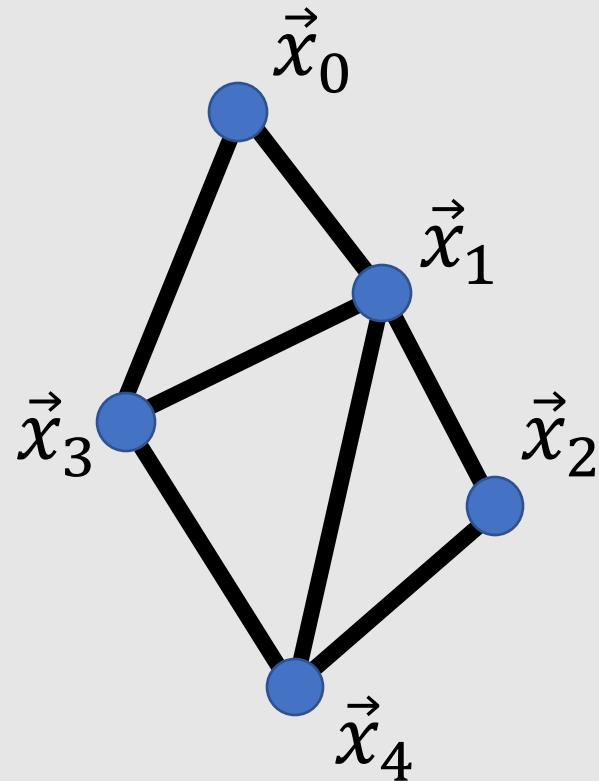
- $L\vec{v} = 0$ means all the vertices are **average** of connected ones



$$L\vec{v} = 0$$
$$\Rightarrow \begin{bmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ 0 & -1 & 2 & 0 & -1 \\ -1 & -1 & 0 & 3 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{pmatrix} = 0$$

Graph Laplacian Matrix as Optimization

- $L\vec{v} = 0$ means sum of square difference is minimized



$$\begin{aligned} W &= \frac{1}{2} \sum_{e \in \mathcal{E}} \|v_{e_1} - v_{e_2}\|^2 \\ &= \frac{1}{2} \vec{v}^T L \vec{v} \end{aligned}$$

$$W \text{ is minimized} \rightarrow \frac{\partial W}{\partial \vec{v}} = L\vec{v} = 0$$

Diagonally Dominant Matrix

- Magnitude of diagonal element is larger than the sum of the magnitude of off-diagonal elements

$$|A_{ii}| \geq \sum_{j \neq i} |A_{ij}|$$

$$A = \begin{bmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ 0 & -1 & 2 & 0 & -1 \\ -1 & -1 & 0 & 3 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

Linear system with diagonally dominant matrix should be easy to solve

Types of Linear Solver

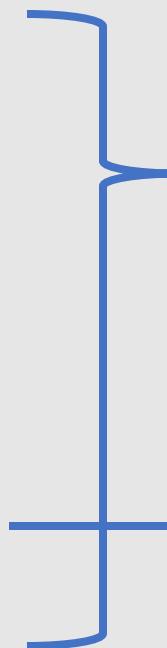
Direct Method

- Gaussian elimination
- LU decomposition

Compute the solution in a fixed procedure

Classical Iterative Methods

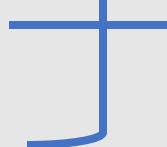
- Jacobi method
- Gauss-Seidel method



Update the solution iteratively

Krylov Subspace Method

- Conjugate gradient method



Faster than the classical method

LU Decomposition

Triangular Matrix

lower triangle matrix

upper triangle matrix

Forward Substitution

- It is very easy to solve linear system for triangular matrix

$$L\vec{x} = \vec{b}$$

Solving Linear System: LU Decomposition

$$A\vec{x} = \vec{b}$$

LU Decomposition

$$A = LU$$

$$LU\vec{x} = \vec{b}$$

\vec{y}

Let $\vec{y} = U\vec{x}$, then $L\vec{y} = \vec{b}$

1. Solve $L\vec{y} = \vec{b}$ using **forward substitution**



2. Solve $U\vec{x} = \vec{y}$ using **backward substitution**

Block LU Decomposition

$$\begin{bmatrix} A & B \\ C & E \end{bmatrix} = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ 0 & E - CA^{-1}B \end{bmatrix}$$

Schur complement

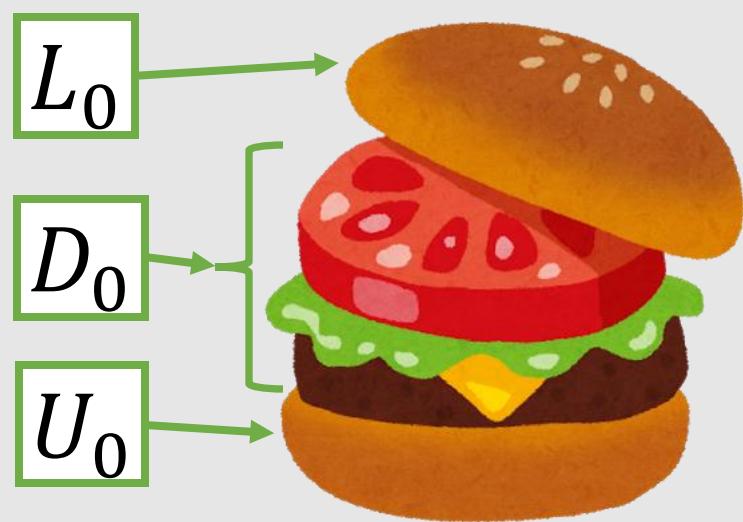
$$= \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ 0 & E - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}$$

LDU Decomposition of 1st Row/Column

$$\begin{bmatrix} a_0 & \vec{b}_0^T \\ \vec{c}_0 & E_0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \vec{c}_0/a_0 & I \end{bmatrix} \begin{bmatrix} a_0 & 0 \\ 0 & E_0 - \vec{c}_0 \vec{b}_0^T/a_0 \end{bmatrix} \begin{bmatrix} 1 & \vec{b}_0^T/a_0 \\ 0 & I \end{bmatrix}$$

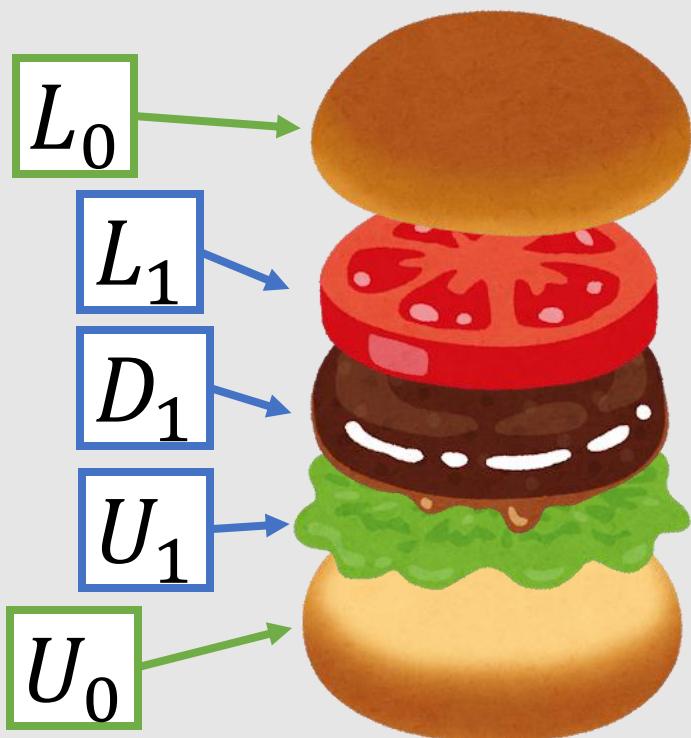
Diagram illustrating the LDU decomposition:

- L_0 (Lower triangular matrix) is represented by the first column of the second matrix.
- D_0 (Diagonal matrix) is represented by the diagonal elements of the second matrix.
- U_0 (Upper triangular matrix) is represented by the second column of the second matrix.



LDU Decomposition of 2nd Row/Column

$$\begin{bmatrix} a_0 & \vec{b}_0^T \\ \vec{c}_0 & E_0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \vec{c}_0/a_0 & I \end{bmatrix} \begin{bmatrix} a_0 & 0 \\ 0 & a_1 \end{bmatrix} \begin{bmatrix} \vec{b}_1^T \\ E_1 \end{bmatrix} \begin{bmatrix} 1 & \vec{b}_0^T/a_0 \\ 0 & I \end{bmatrix}$$



$$\begin{bmatrix} a_0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_0 & 0 \\ 0 & a_1 \end{bmatrix} \begin{bmatrix} a_0 & 0 \\ 0 & E_1 - \vec{c}_1 \vec{b}_1^T/a_1 \end{bmatrix} \begin{bmatrix} a_0 & 0 \\ 0 & 1 \end{bmatrix}$$

LDU Decomposition

$$\begin{bmatrix} a_0 & \vec{b}_0^T \\ \vec{c}_0 & E_0 \end{bmatrix} = \underbrace{L_0 L_1 \cdots L_n}_{L} \begin{bmatrix} a_0 & & & \\ & a_1 & & \\ & & \ddots & \\ & & & a_n \end{bmatrix} \underbrace{U_0 U_1 \cdots U_n}_{U}$$

Classical Iterative Solver

Gauss-Seidel Method

- Solve & update solution x **row-by-row**

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

→ $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$

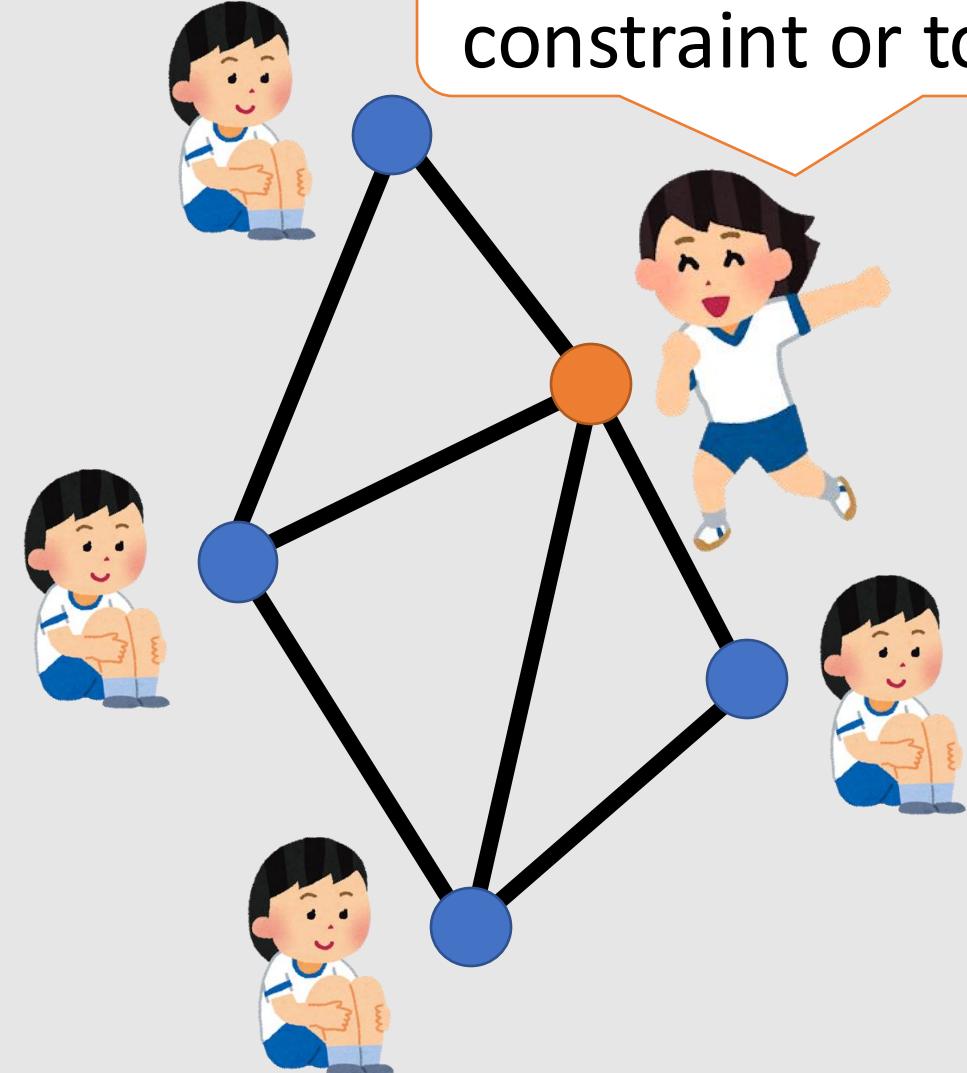
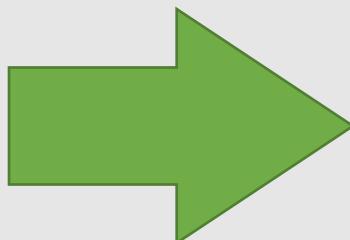
→ $x_1 = (b_1 - a_{12}x_2 - \cdots - a_{1n}x_n)/a_{11}$

→ $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

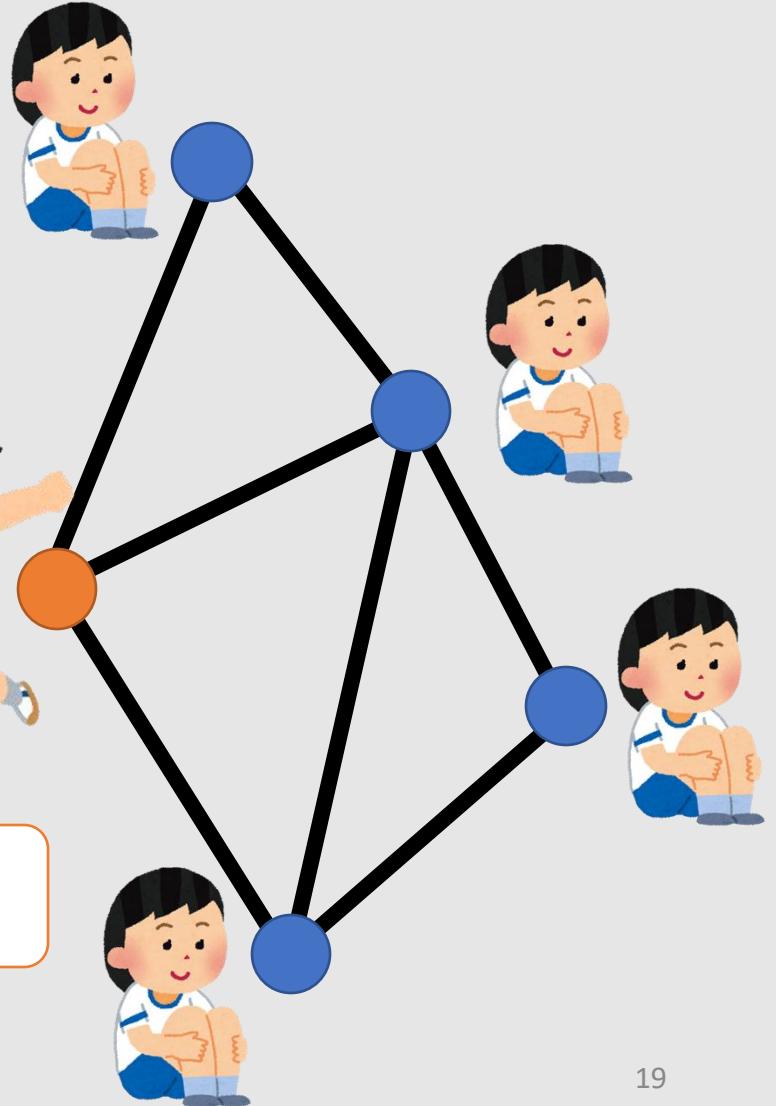
→ $x_n = (b_n - a_{n1}x_1 - a_{n2}x_2 - \cdots)/a_{nn}$

Gauss-Seidel Method in a Grid

Only I can move to satisfy
constraint or to minimize energy



It's my turn !



Jacobi Method

1. Solve each row **independently** to obtain \mathbf{x}'

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$\rightarrow a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$

$\rightarrow x_1' = (b_1 - a_{12}x_2 - \cdots - a_{1n}x_n)/a_{11}$

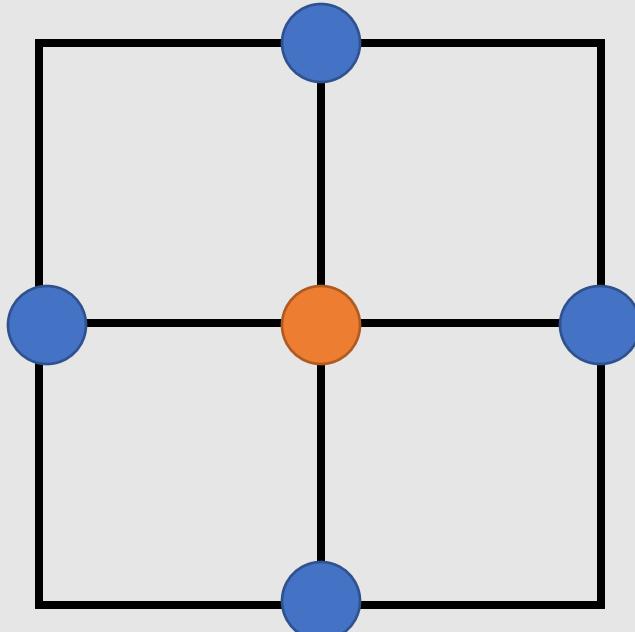
$\rightarrow a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

$\rightarrow x_n' = (b_n - a_{n1}x_1 - a_{n2}x_2 - \cdots)/a_{nn}$

2. Update solution at the same time as $\mathbf{x} = \mathbf{x}'$

Stencil of a 2D Regular Grid

- Stencil represents the diagonal & off-diagonal component of matrix for a row



graph Laplacian stencil

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

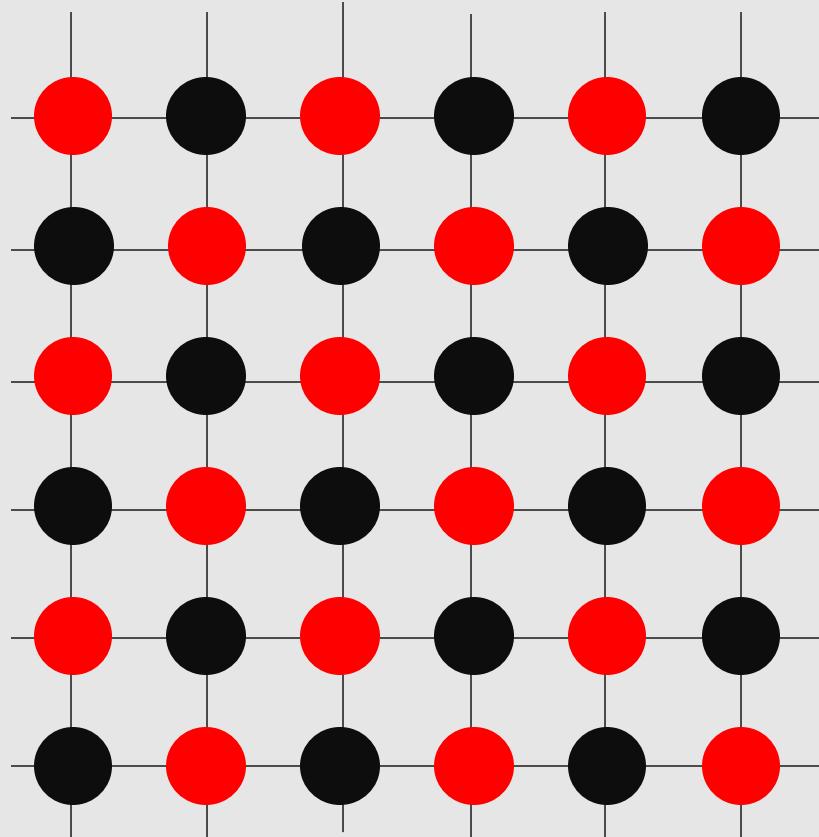
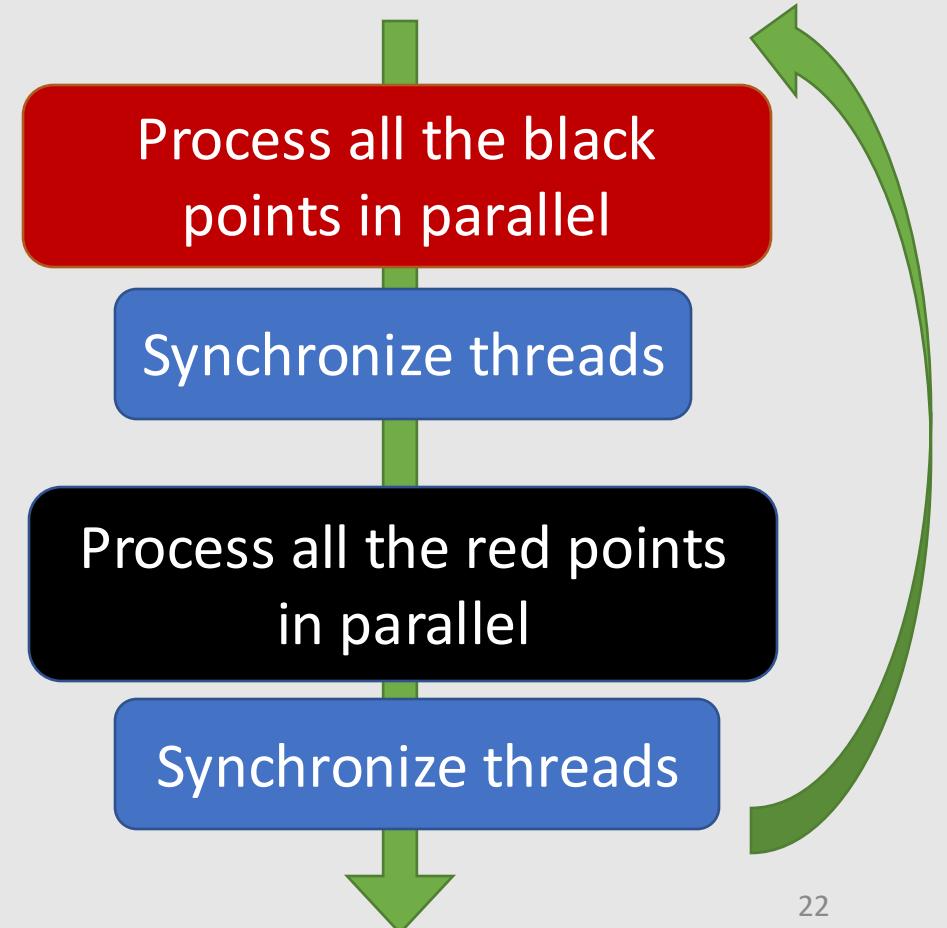
diagonal component

stencil in real life

credit: bukk @ wikipedia

Red-Black Ordering for Regular Grid

- The data of same color can be processed in any order (no-synchronization is necessary for parallel computation)



Krylov Subspace Method

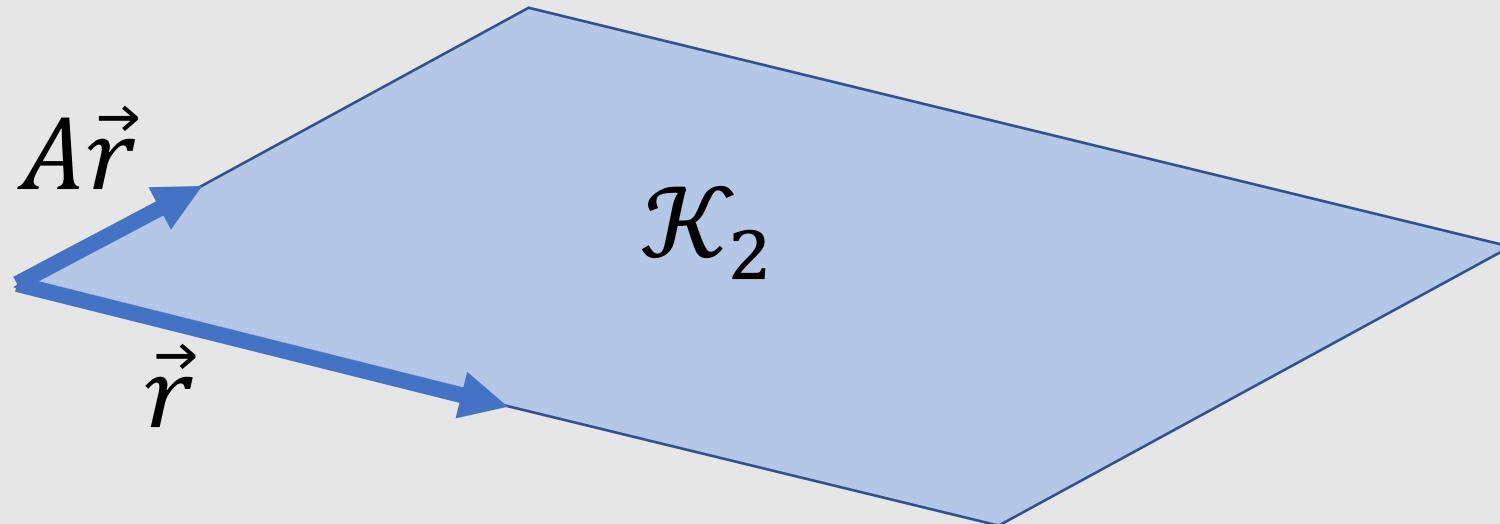
Top 10 Algorithms of the 20 Century

- 1946: The Metropolis Algorithm for Monte Carlo.
- 1947: Simplex Method for Linear Programming.
- **1950: Krylov Subspace Iteration Method.**
- 1951: The Decompositional Approach to Matrix Computations.
- 1957: The Fortran Optimizing Compiler.
- 1959: QR Algorithm for Computing Eigenvalues.
- 1962: Quicksort Algorithms for Sorting.
- 1965: Fast Fourier Transform.
- 1977: Integer Relation Detection.
- 1987: Fast Multipole Method

What is Krylov Subspace?

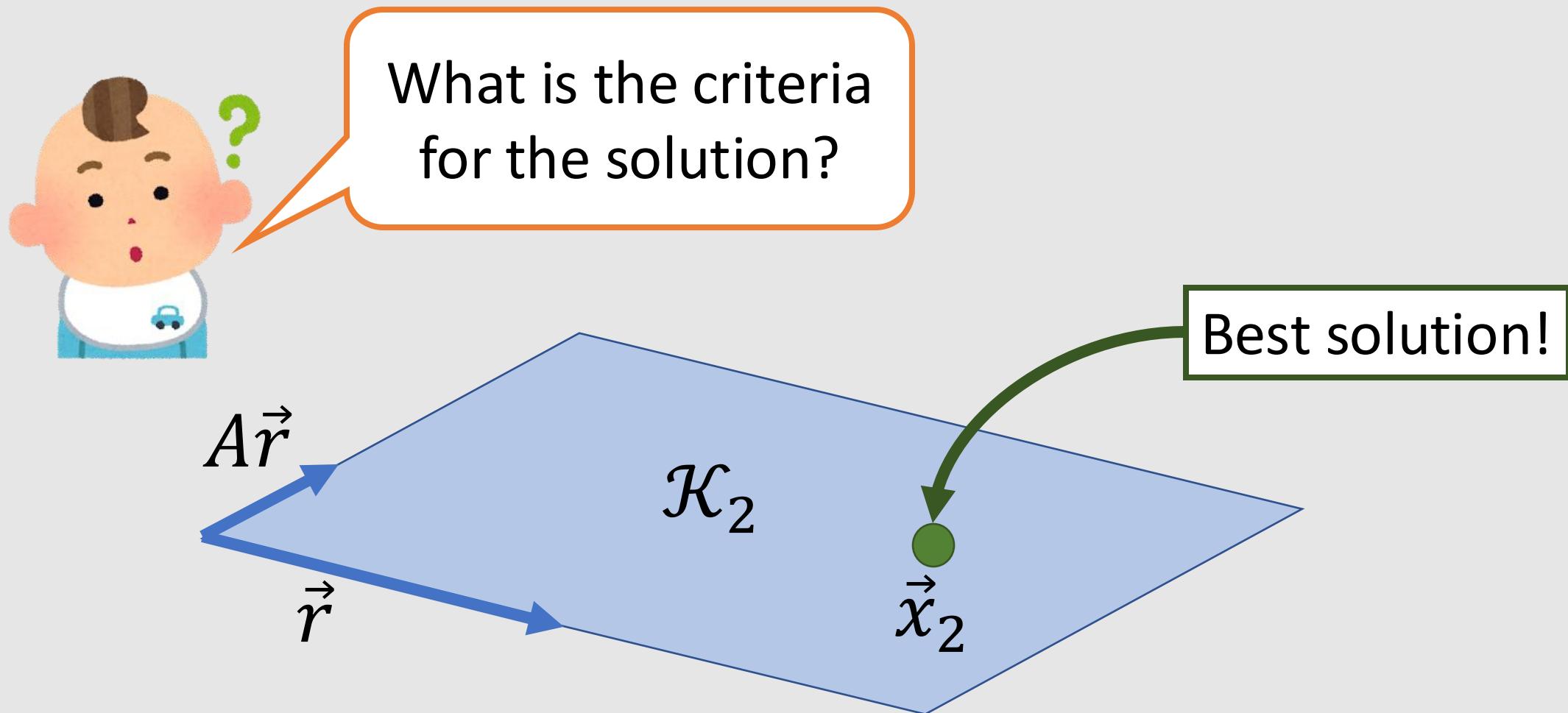
- Space spanned by a vector and its matrix multiplications

$$\mathcal{K}_k = \{\vec{r}, A\vec{r}, A^2\vec{r}, \dots, A^{k-1}\vec{r}\}$$



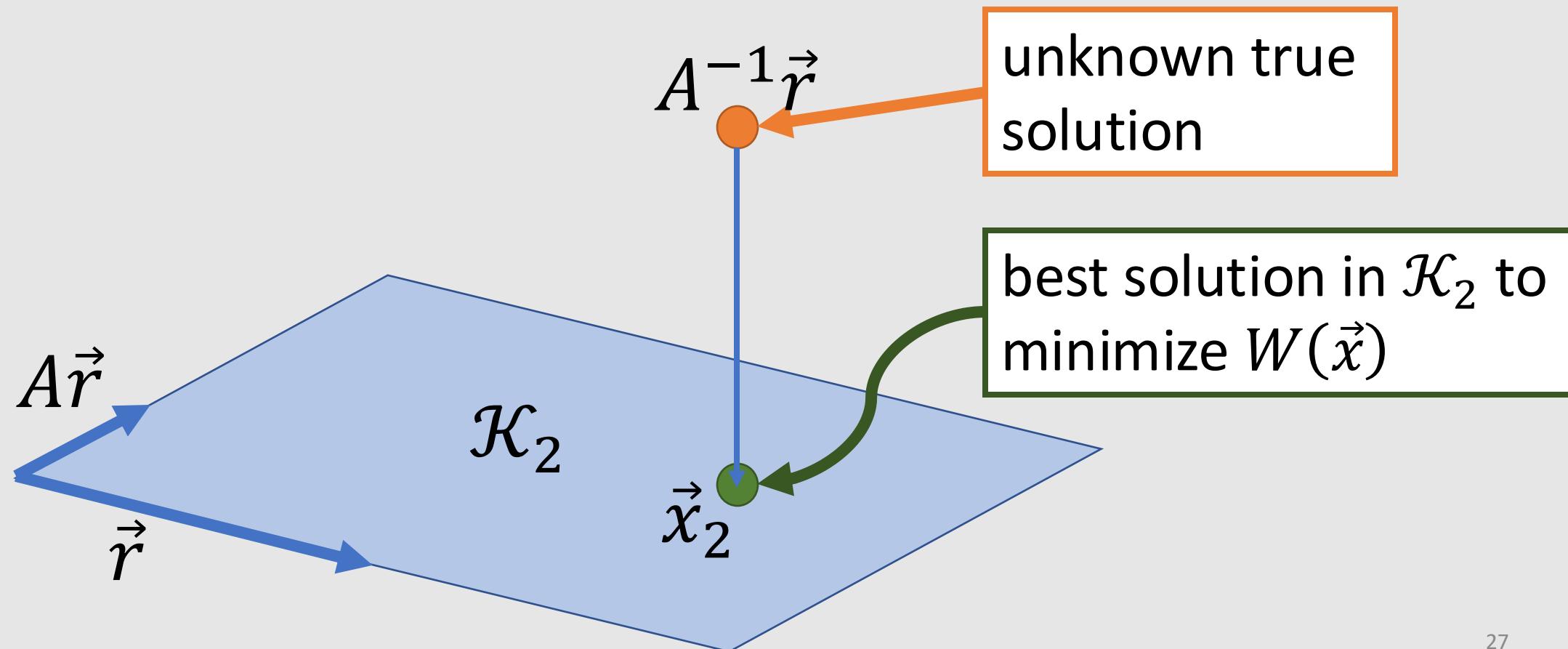
What is Krylov Subspace Method?

- Finding the **best solution of a linear system** in the Krylov subspace



What is Conjugate Gradient (CG) Method?

- Given a symmetric positive definite matrix A , the solution of $A\vec{x} = \vec{r}$ minimize $W(x) = 1/2 \vec{x}^T A \vec{x} - \vec{r}^T \vec{x}$



Symmetric Positive Definite Matrix

- $\langle x, y \rangle_A = x^T A y$ has the **property of inner product**

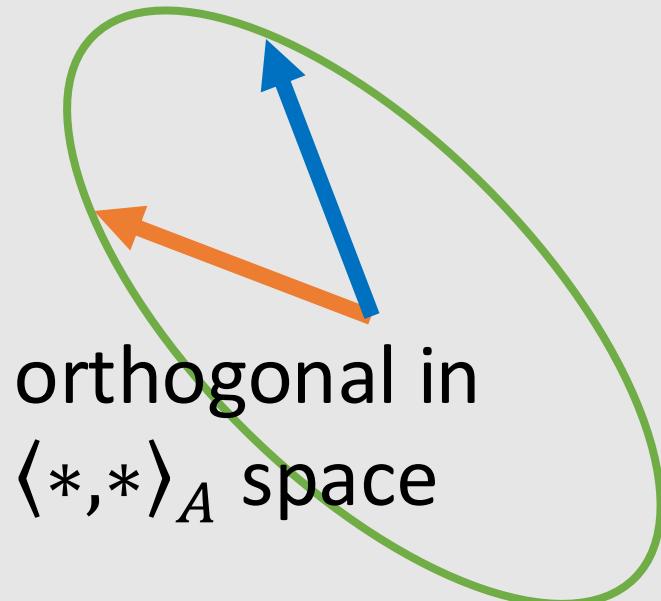
1. $\langle x_1 + x_2, y \rangle_A = \langle x_1, y \rangle_A + \langle x_2, y \rangle_A$
2. $\langle \alpha x, y \rangle_A = \alpha \langle x, y \rangle_A$
3. $\langle x, y \rangle_A = \langle y, x \rangle_A$
4. $\langle x, y \rangle_A \geq 0$, and $\langle x, x \rangle_A = 0 \Rightarrow x = 0$

Symmetric Positive Definite Matrix

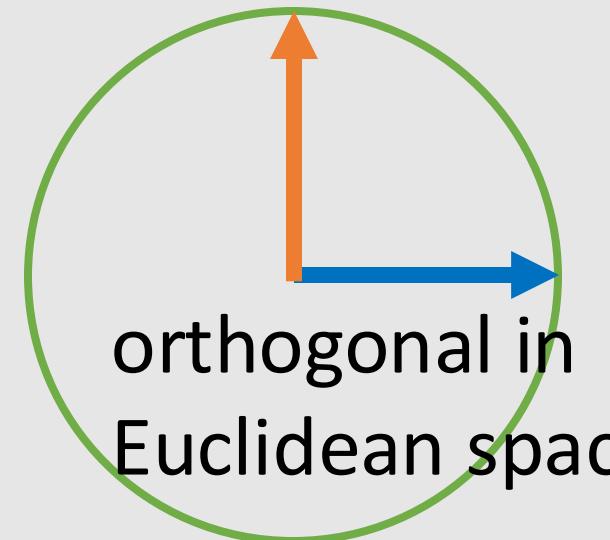
- All eigenvalues are positive, the eigenvectors are orthogonal

$$A = R \Lambda R^T$$

Unit circle in
 $\langle \cdot, \cdot \rangle_A$ space



Unit circle in
Euclidean space

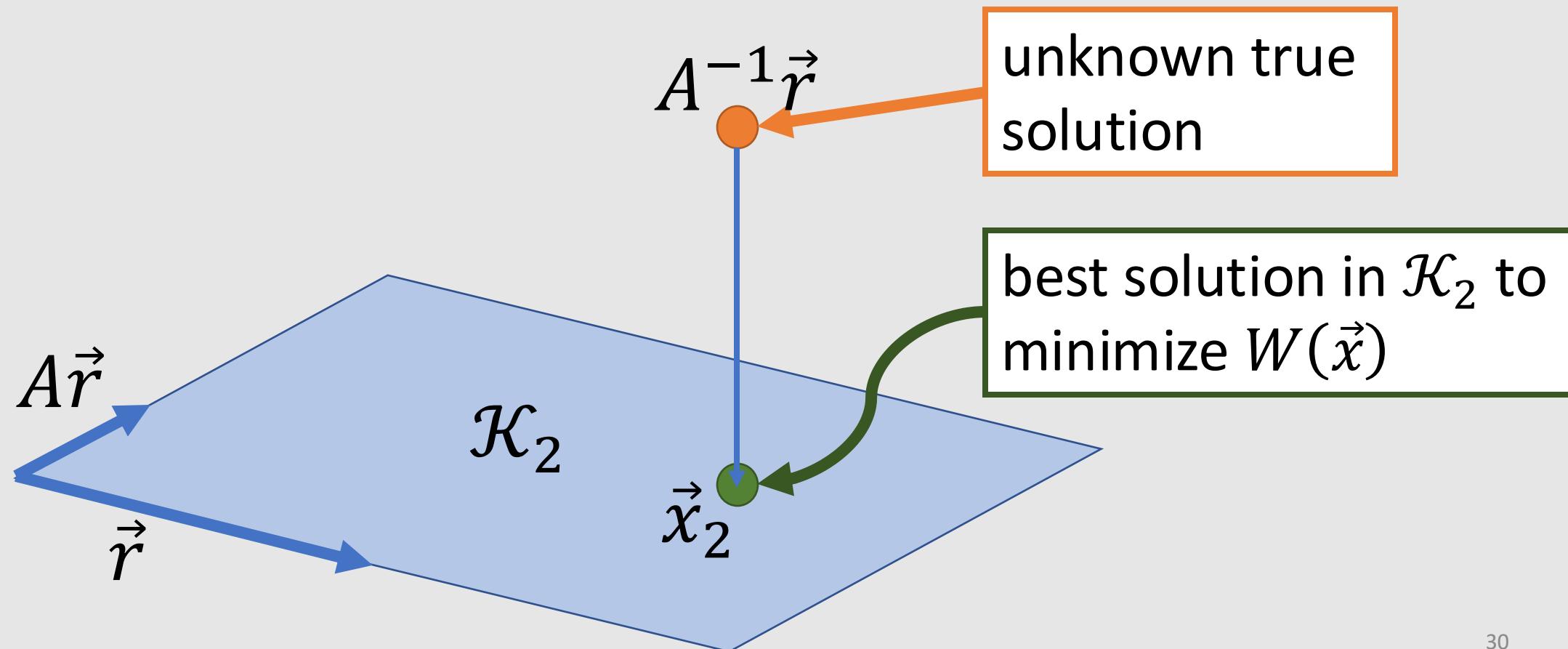


$$y = \Lambda^{\frac{1}{2}} R^T x$$

$$x = R \Lambda^{-\frac{1}{2}} y$$

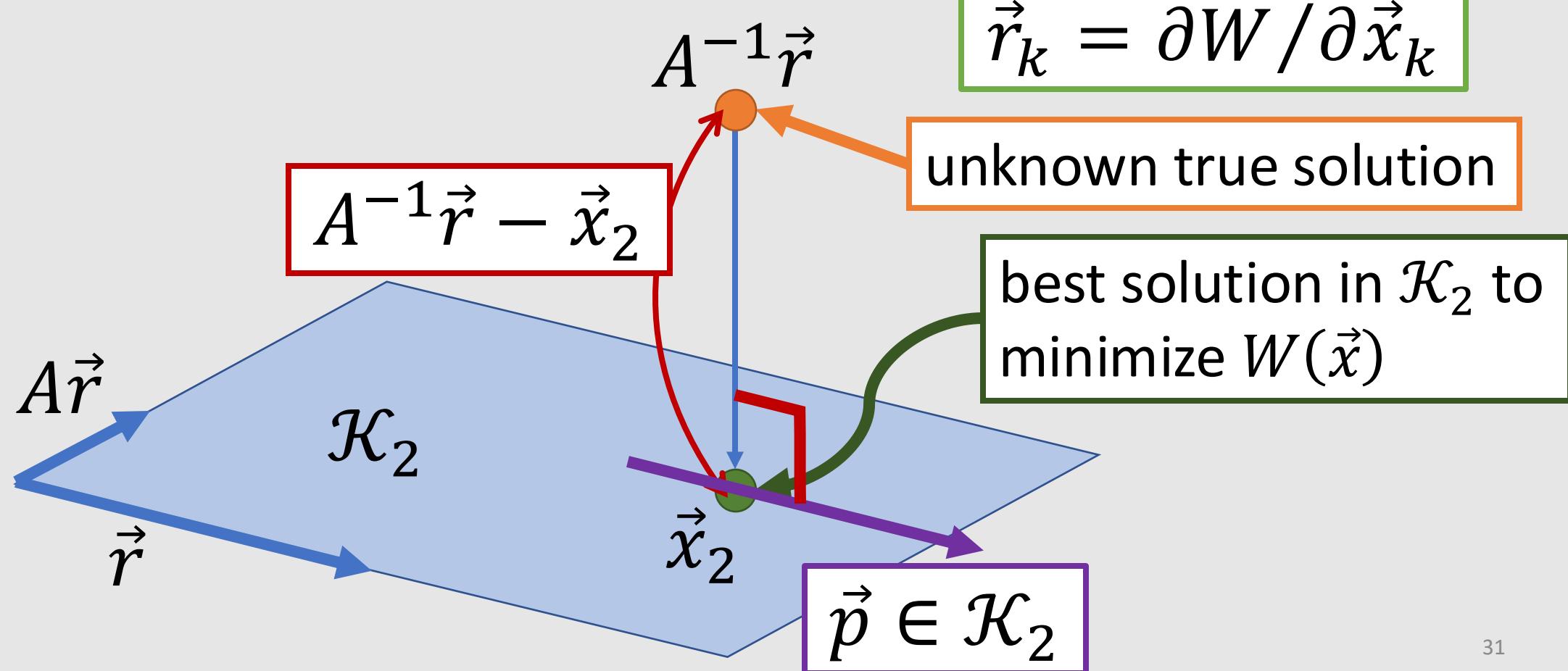
What is Conjugate Gradient (CG) Method?

- Given a symmetric positive definite matrix A , the solution of $A\vec{x} = \vec{r}$ minimize $W(x) = 1/2 \vec{x}^T A \vec{x} - \vec{r}^T \vec{x}$



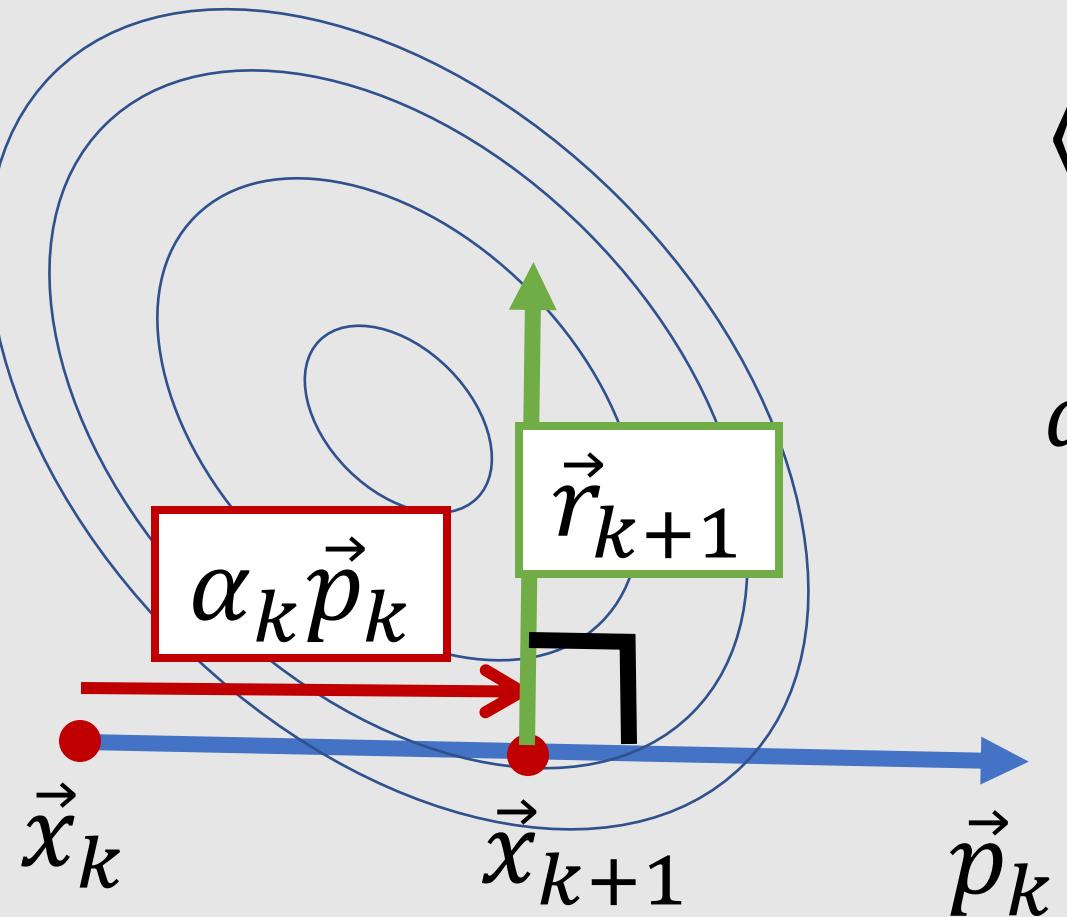
A-Orthogonal Projection of the Solution

Find \vec{x}_k s. t. $\langle \vec{p}, A^{-1}\vec{r} - \vec{x}_k \rangle_A = \vec{p} \cdot (\vec{r} - A\vec{x}_k) = 0$



A-Orthogonal Projection on a Search Line

$$\vec{x}_{k+1} := \vec{x}_k + \alpha_k \vec{p}_k$$

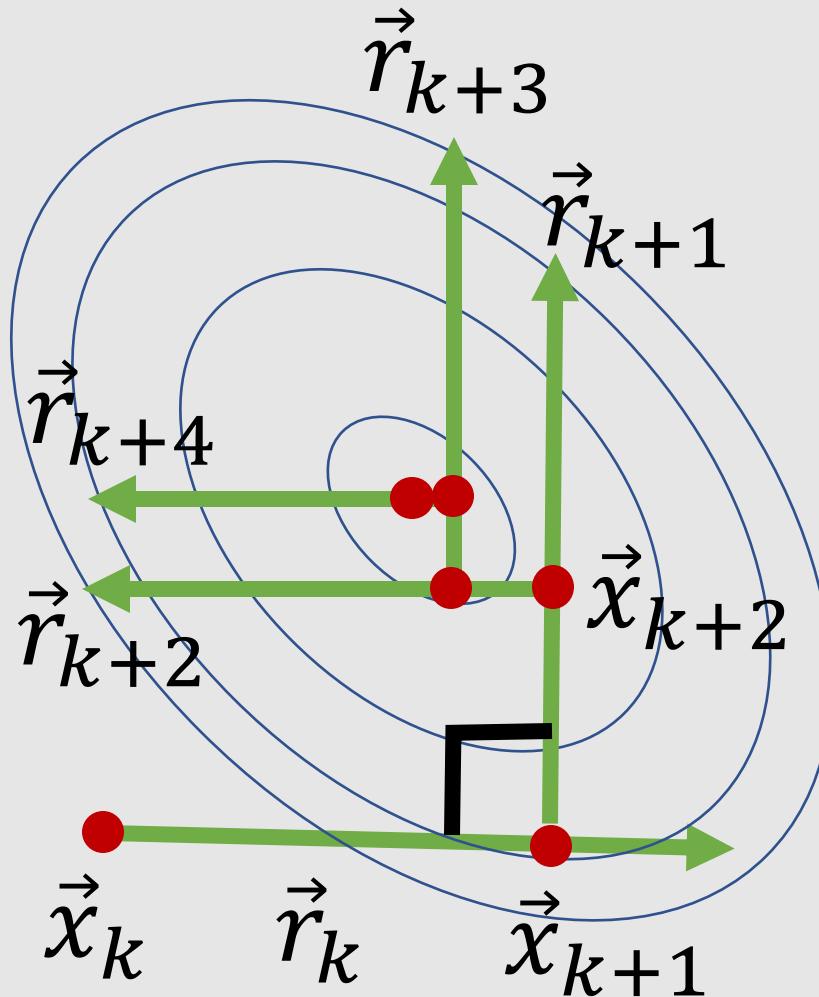


$$\langle \vec{p}_k, A^{-1} \vec{r} - \vec{x}_{k+1} \rangle_A = \vec{p}_k \cdot \vec{r}_{k+1} = 0$$

$$\alpha_k := \frac{\vec{r}_{k+1}^T \vec{r}_{k+1}}{\vec{p}_k^T A \vec{p}_k}$$

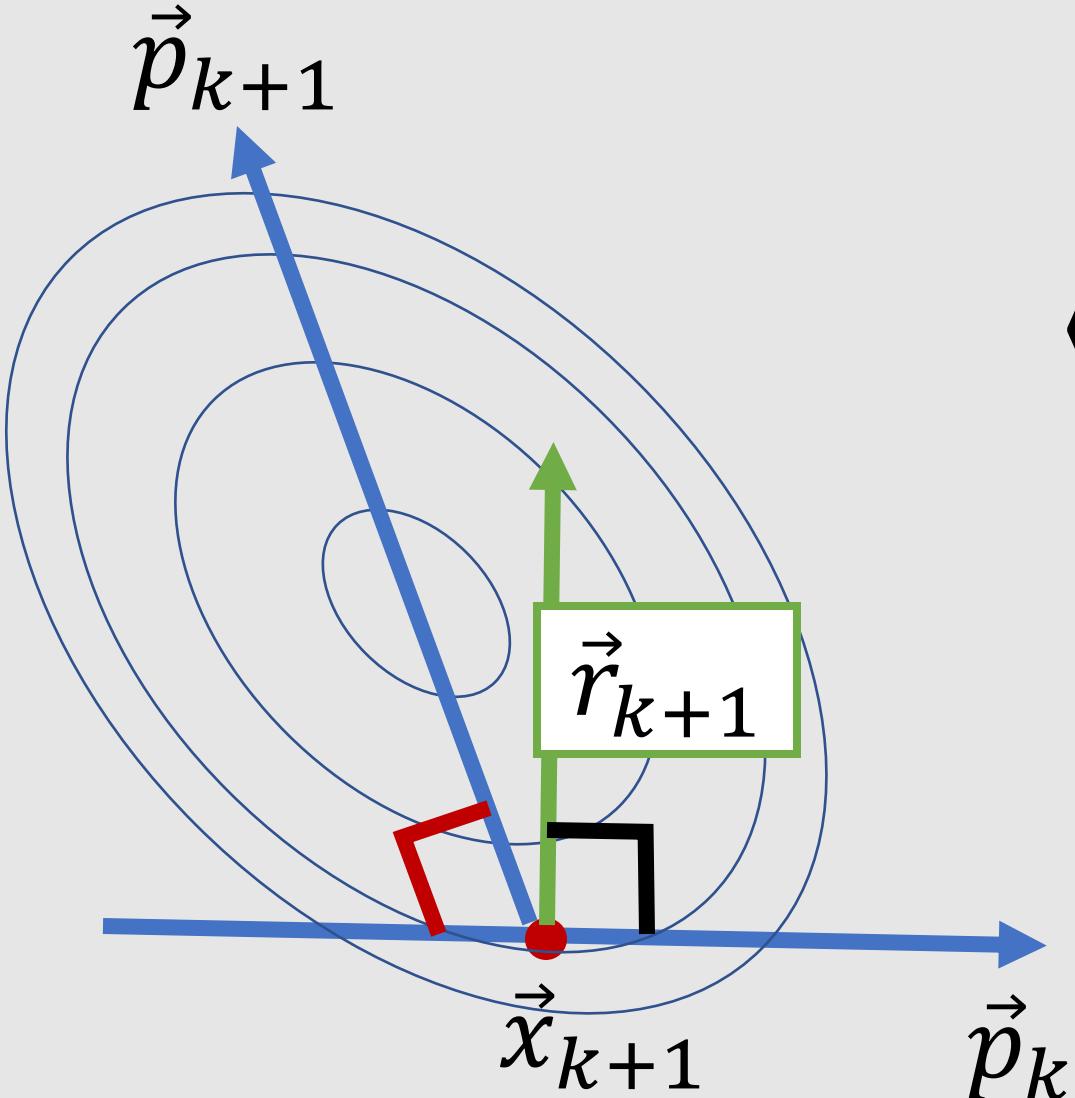
Poor Convergence of the Gradient Descent

- ⌚ We cannot simply move along the residual $\vec{r}_k = \partial W / \partial \vec{x}_k$



The solution goes
jig-zag, seems
not very efficient

Next Search Line is Chosen A-Orthogonal



$$\vec{p}_{k+1} := \vec{r}_{k+1} + \beta_k \vec{p}_k$$

$$\langle \vec{p}_{k+1}, \vec{p}_k \rangle_A = 0$$

$$\beta_k := -\frac{\vec{r}_{k+1}^T A \vec{p}_k}{\vec{p}_k^T A \vec{p}_k} = \frac{\vec{r}_{k+1}^T \vec{r}_{k+1}}{\vec{r}_k^T \vec{r}_k}$$

Conjugate Gradient Method Algorithm

$$\vec{r}_0 = \vec{p}_0 = \vec{r}$$

$$\vec{x}_0 = 0$$

for($k=0; k < k_{max}; ++k$) {

$$\alpha_k := \frac{\vec{r}_k^T \vec{r}_k}{\vec{p}_k^T A \vec{p}_k}$$

$$\vec{x}_{k+1} := \vec{x}_k + \alpha_k \vec{p}_k$$

$$\vec{r}_{k+1} := \vec{r}_k - \alpha_k A \vec{p}_k$$

$$\beta_k := \frac{\vec{r}_{k+1}^T \vec{r}_{k+1}}{\vec{r}_k^T \vec{r}_k}$$

$$\vec{p}_{k+1} := \vec{r}_{k+1} + \beta_k \vec{p}_k$$

}

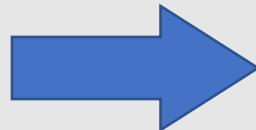
A-projection of the true solution on a search line

A-orthogonalization of the search line

Comparisons of Linear Solver

Direct Method

- Gaussian elimination
- LU decomposition



- 😊 Solve most non-singular matrices
- 😟 Costly for large matrix
- 😟 Cost is same for easy matrices

Classical Iterative Methods

- Jacobi method
- Gauss-Seidel method

- 😊 Simple implementation
- 😊 Cost is low for easy matrix
- 😟 Only for very easy matrix

Krylov Subspace Method

- Conjugate gradient method

- 😊 Simple implementation
- 😊 Faster than classical method
- 😊 More robust than classical method