Jacobian & Hessian



Multivariate Function: High Dimensional Map
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Trajectory of the Function
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Differentiation of the Map
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Jacobian Matrix: Gradient of Map
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Jacobian Matrix: Gradient of Map
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Jacobian Determinant: Volume Change Ratio

Input space R" Output space R™

small cube Output:
parallelepiped

Input » R Output
volume: dv | Jp—— volume = det(J) dv

Jacobian | = Vf



Hessian Matrix: Jacobian Matrix for Gradient

* Second derivative of a scalar function f(x)

Hy = J(Vf(x))



Symmetricity of Hessian Symmetric Matrix
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* Hessian is symmetric if £ (xX) is continuous
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