Grid & Mesh Interpolation



Continuum Approximation

* Drastically reducing degrees of freedom (DoFs)




Linear Interpolation (1D)
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Linear Interpolation (1D)
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Bilinear Interpolation (2D)
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Bilinear Interpolation (2D)
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Bilinear Interpolation (2D)
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Trilinear Interpolation (3D)
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Trilinear Interpolation (3D)
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Barycentric Coordinates for a Triangle

fo = f(L1, Ly, L3)=Lifs + Lafs + Lsfs
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Barycentric Coordinates for a Tetrahedron
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Barycentric Coordinates for a Tetrahedron
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Differentiation of
Interpolated Values



Volume of Tetrahedron from Parallelepiped

* \/olume of parallelepiped: V = a - (E X E)
* \lolume of tetrahedron: V=1/6a - (1_9> X E)




Differential of Scalar Triple Pro
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Volume of Tetrahedron
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Gradient of Interpolated Value
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Integration of Polynomial
over Simplex



Integration Rule for Triangle

. 2111 jl k! Area
LV LEdX = ——
LETrilzg 2+i+j+k)

f(X) = LiL, LY

Baldoni, Velleda, Nicole Berline, Jesus De Loera, Matthias Koppe, and Michele Vergne. "How to integrate a polynomial over a
simplex." Mathematics of Computation 80, no. 273 (2011): 297-325. https://arxiv.org/abs/0809.2083
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Example of Integration over Triangle
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Center of The Gravity of a Triangle in 3D
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Inertia Tensor of a Triangle in 3D
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Integration Rule for Tetrahedron
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Example of Integration over Tetrahedra
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Inertia Tensor of a Tetrahedron
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Inertia Tensor of a Solid 3D Triangle Mesh

* Summing over inertia tensors of tetrahedra connecting the origin
of the coordinate and the three corner points of the triangle
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Inertia Tensor = How Hard to Rotate
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Credit: Lucas Vieira @ Wikipedia
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