
Collision Detection
衝突検出

1

Applications

2

Computer Graphics Robotics CAD

(Credit: freeformer @ Wikipedia)(Wikipedia)(Wikipedia)

Popular Rigid Body Simulation Engine

3

Bullet Open Dynamic Engine

(Credit: Kborer at Wikipedia)(Credit: SteveBaker at Wikipedia)

Real-time Collision Detection using GPU

4

Vivace: a Practical Gauss-Seidel Method for Stable Soft Body Dynamics
Marco Fratarcangeli, Valentina Tibaldo, Fabio Pellacini
ACM Transactions on Graphics (SIGGRAPH Asia), 2016
http://www.cse.chalmers.se/~marcof

Brute-force Collision Detection Never Works

• If there are N objects, there are N(N-1)/2 number of pair

5

𝒪(𝑁2) complexity is too slow!

𝒪(𝑁2)𝒪(𝑁)

Collision Detection in Two Stages

6

Broad Phase: extract candidate Narrow Phase: actual check

This won’t collideThere may be collision

Idea of Finding Collision (like a Garimpeiro)

7

Broad Phase
Narrow Phase

Types of Bounding Volume (BV)

• Easy evaluation (convex shape!)

• Tightly fit to object’s shape

• Low memory footprint

8

Sphere OOBB
Object-Oriented Bounding Box

AABB
Axis-Aligned Bounding Box

k-DOP
discrete orientation polytope

memory tightness

1D Collision Detection

• What is the condition that two line segments intersect?

9

𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥

𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥

Colliding

𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥

𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥

Not-Colliding

𝑝𝑚𝑎𝑥 < 𝑞𝑚𝑖𝑛 or (𝑞𝑚𝑎𝑥 < 𝑝𝑚𝑖𝑛)

𝑝𝑚𝑎𝑥 > 𝑞𝑚𝑖𝑛 and (𝑞𝑚𝑎𝑥 > 𝑝𝑚𝑖𝑛)

Logical inverse

What is “Convex” Shape

• Interpolation of two points is always included

10

Convex Non-Convex

Separation Axis Theorem (SAT)

• If two convex shapes do not collide, there exists an axis where
their projections will not overlap

11

Separation axis

Separation Axis Theorem for 2D Polygons

• One of the edges will be perpendicular to the separation axis

12

Separation axis

Collision Detection for 2D Polygons

• Check all the axes perpendicular to polygon’s edges

13

Collision of AABB and k-DOP

• Project the Bounding Volume (BV) on axes

• Two BVs collide if all projections overlap

14

AABB 3-DOP

Data Structure of AABB & k-DOP

• Minimum and maximum along the axis

15

template <int naxis>
class CKdops
{
public:
 double minmax[naxis][2];
};

constexpr double axes[3][2] = {
 {0,1},
 {1,0},
 {1,1} };
std::vector< CKdops<3> > aKdops;

Non-type template parameter
(compile time argument)

GJK Algorithm
Interactive web page: https://cse442-17f.github.io/Gilbert-Johnson-Keerthi-
Distance-Algorithm/

16

Minkowski Addition

• A+B can be computed by moving A inside B

17

A

A+B 𝐴 + 𝐵 = Ԧ𝑎 + 𝑏| Ԧ𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

B

Minkowski Addition for Convex Shapes

• Assume A and B are convex

• A+B is the convex hull of vertex coordinate addition

18

A

B

A+B 𝐴 + 𝐵 = 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙 Ԧ𝑎𝑖 + 𝑏𝑗

Ԧ𝑎0

Ԧ𝑎0

Ԧ𝑎0

Ԧ𝑎1 Ԧ𝑎2
Ԧ𝑎2Ԧ𝑎1

Ԧ𝑎1

𝑏2

𝑏1

𝑏2

Support Function and Minkowski Addition

• Given a direction Ԧ𝑒, support function returns the furthest point

• Support function directly gives the vertices of the convex hull

19

A

B

A+B

Ԧ𝑎0

Ԧ𝑎0

Ԧ𝑎0

Ԧ𝑎1 Ԧ𝑎2
Ԧ𝑎2Ԧ𝑎1

Ԧ𝑎1

𝑏2

𝑏1

𝑏2
Ԧ𝑎0

Ԧ𝑎1 Ԧ𝑎2

Ԧ𝑒

SupportA Ԧ𝑒 = arg max
𝑎∈{𝑎0,𝑎1,𝑎2}

Ԧ𝑒 ∙ Ԧ𝑎

Result of
 support

Minkowski Substraction

20

A

B

A+B

𝐴 + 𝐵 = Ԧ𝑎 + 𝑏| Ԧ𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

B

A-B

-B

𝐴 − 𝐵 = Ԧ𝑎 − 𝑏| Ԧ𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

A

Minkowski Subtraction & Collision

Two convex polygon’s Minkowski
subtraction contains origin

21

Two convex
polygons collide

B

-B

A

GJK algorithm itegratively
update a simplex such that
it contains the origin

GJK Algorithm (YouTube Video by Reducible)

22

Video by Reducible
A Strange But Elegant Approach to a Surprisingly Hard Problem (GJK Algorithm)
https://www.youtube.com/watch?v=ajv46BSqcK4

https://www.youtube.com/watch?v=ajv46BSqcK4

Broad-phase Collision
Detection

25

How We can Find Collisions of Circles?

26

𝑑𝑖𝑠𝑡 Ԧ𝑝1, Ԧ𝑝2 ≤ 𝑟1 + 𝑟2 ⇒Collision

𝑟1 𝑟2

Ԧ𝑝1 Ԧ𝑝2

𝑑𝑖𝑠𝑡 Ԧ𝑝1, Ԧ𝑝2

Approaches

• Brute force approach

• Sweep & Prune method

• Spatial Hashing (e.g., Regular grid)

• Spatial Partitioning (e.g., KD-tree)

• Bounding Volume Hierarchy (BVH)

27

We four are awesome!

Sweep & Prune (Sort & Sweep) Method

• Simple but effective culling method

28

C

A

B

F

E

D

𝐴0 𝐴1 𝐵0 𝐵1 𝐸0 𝐸1 𝐶0 𝐶1𝐷0 𝐷1𝐹0 𝐹1

{𝐴0, 𝐴1, 𝐵0, 𝐵1, 𝐶0, 𝐶1, 𝐷0, 𝐷1, 𝐸0, 𝐸1, 𝐹0, 𝐹1}

sort

{𝐴0, 𝐹0, 𝐴1, 𝐹1, 𝐵0, 𝐹1, 𝐸0, 𝐷0, 𝐸1, 𝐷1, 𝐶0, 𝐶1}

𝑋0: put X in the set

𝑋1: remove X in the set

How to Choose Sweeping Axis ?

• kDOPs -> Sweep in the kDOPs’ axis

• Sphere, AABB, OOBB -> XYZ-axis or PCA

29

Highest
variance

Spatial Hashing using Regular Grid

• Putting circles in a grid based on circles’ center positions

• Grid length is maximum diameter of the circle
 Look only 1-ring neighborhood

30

0 1 2 3

4 5 6 7

A

B

C

D

E
Possible collisions:
 {A,E}, {E,C}, {C,D}, {D,B}

No need to check for {E,D},{C,B}…etc

Spatial Hashing using Regular Grid

0 1 2 3

4 5 6 7

A

B

C

D

E

circle index A B C D E

grid index 0 7 5 2 0

• Creating look-up table from grid index to circle index

Spatial Hashing using Regular Grid

32

0 1 2 3

4 5 6 7

A

B

C

D

E

circle index A B C D E

grid index 0 7 5 2 0

• Creating look-up table from grid index to circle index

circle index A E D C B

grid index 0 0 2 5 7
A=

sort by the
grid index

Spatial Hashing using Regular Grid

33

0 1 2 3

4 5 6 7

A

B

C

D

E

circle index A B C D E

grid index 0 7 5 2 0

• Creating look-up table from grid index to circle index

circle index A E D C B

grid index 0 0 2 5 7

index of A 0 2 2 3 3 3 4 4 5

A=

B=

sort by the
grid index

B[igrid] <= j < B[igrid+1]
icircle=A[j]

jagged array

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)

2.Split the space along median

34

A

Ordered with y-axis

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)

2.Split the space along median

3.Repeat along other axis (e.g., x-axis)

35

A

A

Ordered with x-axis

B

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)

2.Split the space along median

3.Repeat along other axis (e.g., x-axis)

36

A

A

B

B C

C

Bounding Volume Hierarchy (BVH)

37

• Near triangles are in the same branch

• Each node has a BV that includes two child BVs

A

B C

D E F G

A
B

C

D

E

F
G

Example of BVH Data Structure in C++

38

index 0 1 2 3 4 5 6

left-child index 1 3 4 tri index tri index tri index tri index

Right-child index 2 5 6 -1 -1 -1 -1

BV data … … … … … … …

0

1 2

3 5 4 6

template <class T>
class CNodeBVH {
 unsigned int ichild_left;
 unsigned int ichild_right;
 T BV;
};

std::vector<CNodeBVH<CAABB>> aNodeBVH;

Evaluation of BVH using Recursion

• Ask question to the root node -> if true the node asks the
same question to two child nodes and so on

39

A

B C

D E F G

A, do you intersect with a ray?
A, do you have self-
intersection?

Yes, so let me
ask my children

Top-down Approach to Build BVH

• Use PCA for separating triangles into two groups

40

Highest
variance

Highest
variance

Highest
variance

Linear BVH: Fully Parallel Construction

• Construct BVH based on Morton code (i.e., Z-order curve)

• Two cells with close Morton codes tends to be near

41

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

2𝑛 division

2
𝑛

 d
iv

is
io

n

2D square domain with 2𝑛 edge division

22𝑛 number of cells

Cell index is size of 2𝑛 in binary

Linear BVH: Fully Parallel Construction

• Convert XYZ coordinate into 1D (linear) integer coordinate

42

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0

0

0

0

0

1

1

0

1

1

0

0

1

0

0

1

1

1

1

1

12 6 15 9 0

A B C D E

Linear BVH: Fully Parallel Construction

• Sort objects by their Morton codes

43

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

1

1

0

0

12

A

0

1

1

0

6

B

1

1

1

1

15

C

1

0

0

1

9

D

0

0

0

0

0

E

sorted

From Morton Code to BVH Tree

• Divide tree when digits of sorted Morton codes are different

44

1

1

0

0

12

A

0

1

1

0

6

B

1

1

1

1

15

C

9

D

0

0

0

0

0

E Y

1

0

0

1

Z W X

W

ZY

X

Reference

• “Real-Time Collision Detection” by Christer Ericson

45

Japanese translation
available

Reference

• GPU Gems 3: Chapter 32. Broad-Phase Collision Detection
with CUDA

46

Available for free at: https://developer.nvidia.cn/gpugems/gpugems3/part-v-physics-
simulation/chapter-32-broad-phase-collision-detection-cuda

Reference on Linear-BVH

• Thinking Parallel, Part III: Tree Construction on the GPU

by Tero Karras

47

https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/

Further Study

• GJK algorithm

• EPA algorithm

• Surface area heuristic

48

	Default Section
	Slide 1: Collision Detection
	Slide 2: Applications
	Slide 3: Popular Rigid Body Simulation Engine
	Slide 4: Real-time Collision Detection using GPU
	Slide 5: Brute-force Collision Detection Never Works
	Slide 6: Collision Detection in Two Stages
	Slide 7: Idea of Finding Collision (like a Garimpeiro)
	Slide 8: Types of Bounding Volume (BV)
	Slide 9: 1D Collision Detection
	Slide 10: What is “Convex” Shape
	Slide 11: Separation Axis Theorem (SAT)
	Slide 12: Separation Axis Theorem for 2D Polygons
	Slide 13: Collision Detection for 2D Polygons
	Slide 14: Collision of AABB and k-DOP
	Slide 15: Data Structure of AABB & k-DOP
	Slide 16: GJK Algorithm
	Slide 17: Minkowski Addition
	Slide 18: Minkowski Addition for Convex Shapes
	Slide 19: Support Function and Minkowski Addition
	Slide 20: Minkowski Substraction
	Slide 21: Minkowski Subtraction & Collision
	Slide 22: GJK Algorithm (YouTube Video by Reducible)
	Slide 25: Broad-phase Collision Detection
	Slide 26: How We can Find Collisions of Circles?
	Slide 27: Approaches
	Slide 28: Sweep & Prune (Sort & Sweep) Method
	Slide 29: How to Choose Sweeping Axis ?
	Slide 30: Spatial Hashing using Regular Grid
	Slide 31: Spatial Hashing using Regular Grid
	Slide 32: Spatial Hashing using Regular Grid
	Slide 33: Spatial Hashing using Regular Grid
	Slide 34: Space Partitioning with K-D Tree
	Slide 35: Space Partitioning with K-D Tree
	Slide 36: Space Partitioning with K-D Tree
	Slide 37: Bounding Volume Hierarchy (BVH)
	Slide 38: Example of BVH Data Structure in C++
	Slide 39: Evaluation of BVH using Recursion
	Slide 40: Top-down Approach to Build BVH
	Slide 41: Linear BVH: Fully Parallel Construction
	Slide 42: Linear BVH: Fully Parallel Construction
	Slide 43: Linear BVH: Fully Parallel Construction
	Slide 44: From Morton Code to BVH Tree
	Slide 45: Reference
	Slide 46: Reference
	Slide 47: Reference on Linear-BVH
	Slide 48: Further Study

