Collision Detection

Applications

Computer Graphics Robotics CAD

(Wikipedia) (Wikipedia) (Credit: freeformer @ Wikipedia)

Popular Rigid Body Simulation Engine

Bullet Open Dynamic Engine

(Credit: SteveBaker at Wikipedia) (Credit: Kborer at Wikipedia)

Real-time Collision Detection using GPU

Vivace: a Practical Gauss-Seidel Method for

Stable Soft Body Dynamics
Marco Fratarcangeli Valentina Tibaldo Fabio Pellacini
Chalmers University of Technology Sapienza University of Rome

Qs
g

Vivace: a Practical Gauss-Seidel Method for Stable Soft Body Dynamics
Marco Fratarcangeli, Valentina Tibaldo, Fabio Pellacini

ACM Transactions on Graphics (SIGGRAPH Asia), 2016
http://www.cse.chalmers.se/~marcof

Brute-force Collision Detection Never Works

* If there are N objects, there are N(N-1)/2 number of pair
mm) O(N?) complexity is too slow!

O(N) O(N?)

e

Collision Detection in Two Stages

Broad Phase: extract candidate

There may be collision

This won’t collide

Narrow Phase: actual check

Idea of Finding Collision (like a Garimpeiro)

Types of Bounding Volume (BV)

* Easy evaluation (convex shape!) memory m tightness
* Tightly fit to object’s shape
* Low memory footprint

——

AABB O0OBB k-DOP
Axis-Aligned Bounding Box Object-Oriented Bounding Box discrete orientation polytope

1D Collision Detection

* What is the condition that two line segments intersect?

Colliding Not-Colliding
— —
| | Pmin Pmax Ymin Umax
Qmin Umax
Pmin Pmax — —
Amin 9max Pmin Pmax

(pmax > Qmin) and (Qmax > Pmin)
‘ (pmax < Qmin) Or (Qmax < Pmin)

Logical inverse u

What is “Convex” Shape

* Interpolation of two points is always included

Convex Non-Convex

10

Separation Axis Theorem (SAT)

* If two convex shapes do not collide, there exists an axis where
their projections will not overlap

—» Separation axis

11

Separation Axis Theorem for 2D Polygons

* One of the edges will be perpendicular to the separation axis

Separation axis

12

Collision Detection for 2D Polygons

* Check all the axes perpendicular to polygon’s edges

Collision of AABB and k-DOP

* Project the Bounding Volume (BV) on axes

* Two BVs collide if all projections overlap

AABB

|
|
-
|
|
|
|
|
|
|
|
|

_
_
-
_

_
_
_
_
_
|
> |

Data Structure of AABB & k-DOP

* Minimum and maximum along the axis

template <int naxis> Non-type template parameter

lass CKd . .
C (compile time argument)

public:
double minmax[naxis][2];

5

constexpr double axes[3][2] ={
{0,1},
{1,0},
{1,1} };

std::vector< CKdops<3> > aKdops;

GJK Algorithm

Minkowski Addition

* A+B can be computed by moving A inside B

A+B A+B={i+bli€A, beB)

B
-
/
—

v

Minkowski Addition for Convex Shapes

e Assume A and B are convex
e A+B is the convex hull of vertex coordinate addition

A+ B = ConvexHull(d; + B])

Support Function and Minkowski Addition

* Given a direction e, support function returns the furthest point
e Support function directly gives the vertices of the convex hull
Supporta(e) =arg . max_ (e-a)

-

ac{dg,d1,d,}

Minkowski Substraction
A—B={d—bli€A beEB)

- A

A+B={d+bld€A beB)

L N\

: : ~—_

Minkowski Subtraction & Collision

Two convex polygon’s Minkowski
subtraction contains origin

Two convex
polygons collide

> GJK algorithm itegratively
update a simplex such that
it contains the origin

GJK Algorithm (YouTube Video by Reducible)

Video by Reducible
A Strange But Elegant Approach to a Surprisingly Hard Problem (GJK Algorithm)
https://www.youtube.com/watch?v=ajv46BSqcK4

https://www.youtube.com/watch?v=ajv46BSqcK4

Broad-phase Collision
Detection

How We can Find Collisions of Circles?

® @
o & ...
@

dist(p,,p,) < r; + 1, =Collision

26

Approaches
+ Bruteforce-approach

* Sweep & Prune method

 Spatial Hashing (e.g., Regular grid)

e Spatial Partitioning (e.g., KD-tree)

* Bounding Volume Hierarchy (BVH) U BT B8 ERESEME.

Sweep & Prune (Sort & Sweep) Method

e Simple but effective culling method
{AO'All BOJ 31; CO! Cli DO! Dl' EO' El' FOJ Fl}

sort

v
{AO' FO'Ali F1; Bo; F1; EO' DOJ El' D1; CO' Cl}

Xp: put X in the set
Xq:remove X in the set

a

j—b| Lgm——p! >
I 1 | I I I
I T T I I I
Ay Fy Ay F; By By E, Co Cy

How to Choose Sweeping Axis ?

* kDOPs -> Sweep in the kDOPs’ axis
* Sphere, AABB, OOBB -> XYZ-axis or PCA

Highest
variance

Spatial Hashing using Regular Grid

* Putting circles in a grid based on circles’ center positions

* Grid length is maximum diameter of the circle
mm)> Look only 1-ring neighborhood

Possible collisions:
{AIE}) {EIC}I {CID}I {DIB}

No need to check for {E,D},{C,B}...etc

Spatial Hashing using Regular Grid

* Creating look-up table from grid index to circle index

circleindex A B C D E

gridindex |0 |7 |5 |2 |0

Spatial Hashing using Regular Grid

* Creating look-up table from grid index to circle index

circleindex A B C D E

grid index

A= circleindex A E D C B
gridindex (0|0 |2|5|7

32

Spatial Hashing using Regular Grid

* Creating look-up table from grid index to circle index

circleindex A B C D E

grid index

B=|indexofA | 0|2[2[3(3|3|4|4]|5

jagged array

Bligrid] <=j < B[igrid+1]
icircle=A[j] .

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)
2.Split the space along median

>

Ordered with y-axis

34

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)
2.Split the space along median
3.Repeat along other axis (e.g., x-axis)

XX K

Ordered with x-axis

35

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)
2.Split the space along median
3.Repeat along other axis (e.g., x-axis)

36

Bounding Volume Hierarchy (BVH)

* Near triangles are in the same branch
e Each node has a BV that includes two child BVs

---------- A

T I

O

r

Example of BVH Data Structure in C++

index 0 1 2 3 4 5 6
left-child index 1 3 4 tri index tri index tri index tri index
Right-child index | 2 5 6 -1 -1 -1 -1

BV data

template <class T>

class CNodeBVH {
unsigned int ichild_left;
unsigned int ichild_right;
T BV,

|5

std::vector<CNodeBVH<CAABB>> aNodeBVH:;

Evaluation of BVH using Recursion

* Ask question to the root node -> if true the node asks the
same question to two child nodes and so on

A, do you intersect with a ray?
A, do you have self-
intersection?

ﬂ Yes, so let me

ask my children

l_(*’&

Top-down Approach to Build BVH

e Use PCA for separating triangles into two groups
Highest
‘q ‘ variance ‘y

A “ \
\

\ J‘ (

Highest

(A e (A Highest (K

variance

Linear BVH: Fully Parallel Construction

* Construct BVH based on Morton code (i.e., Z-order curve)

 Two cells with close Morton codes tends to be near
2™ division

2D square domain with 2™ edge division

) 22" number of cells
Cell index is size of 2n in binary

2™ division

Linear BVH: Fully Parallel Construction

e Convert XYZ coordinate into 1D (linear) integer coordinate

A B C D
¢ X 2 ¢
12 6 15 9
1 0 1 1
1 1 1 0
0 1 1 0
0 0 1 1

O O ©o o |o

Linear BVH: Fully Parallel Construction

 Sort objects by their Morton codes

E B D A C
¢ X X ¢ 2
0 6 9 12 15
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1
0 0 1 0 1

sorted =

From Morton Code to BVH Tree

* Divide tree when digits of sorted Morton codes are different

EYBlle ZA‘W\C

X X X X

0 6 9 12 15
I 0 | 1 1 1

0 1 0 1 1

0 1 ol ol {l 2[]

0 0 1 0 1

Reference

» “Real-Time Collision Detection” by Christer Ericson

Japanese translation
available

F=LTQTIITDI=HD
UPNELALERAE

%% Christer Ericson
LU £

45

Reference

* GPU Gems 3: Chapter 32. Broad-Phase Collision Detection
with CUDA

GPUGems 3

Available for free at: https://developer.nvidia.cn/gpugems/gpugems3/part-v-physics- 4
simulation/chapter-32-broad-phase-collision-detection-cuda

Reference on Linear-BVH

* Thinking Parallel, Part lll: Tree Construction on the GPU
by Tero Karras

o /u\
2

T [

'"EE R RN RN

https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/ : oA

Further Study

* GJK algorithm
* EPA algorithm
e Surface area heuristic

	Default Section
	Slide 1: Collision Detection
	Slide 2: Applications
	Slide 3: Popular Rigid Body Simulation Engine
	Slide 4: Real-time Collision Detection using GPU
	Slide 5: Brute-force Collision Detection Never Works
	Slide 6: Collision Detection in Two Stages
	Slide 7: Idea of Finding Collision (like a Garimpeiro)
	Slide 8: Types of Bounding Volume (BV)
	Slide 9: 1D Collision Detection
	Slide 10: What is “Convex” Shape
	Slide 11: Separation Axis Theorem (SAT)
	Slide 12: Separation Axis Theorem for 2D Polygons
	Slide 13: Collision Detection for 2D Polygons
	Slide 14: Collision of AABB and k-DOP
	Slide 15: Data Structure of AABB & k-DOP
	Slide 16: GJK Algorithm
	Slide 17: Minkowski Addition
	Slide 18: Minkowski Addition for Convex Shapes
	Slide 19: Support Function and Minkowski Addition
	Slide 20: Minkowski Substraction
	Slide 21: Minkowski Subtraction & Collision
	Slide 22: GJK Algorithm (YouTube Video by Reducible)
	Slide 25: Broad-phase Collision Detection
	Slide 26: How We can Find Collisions of Circles?
	Slide 27: Approaches
	Slide 28: Sweep & Prune (Sort & Sweep) Method
	Slide 29: How to Choose Sweeping Axis ?
	Slide 30: Spatial Hashing using Regular Grid
	Slide 31: Spatial Hashing using Regular Grid
	Slide 32: Spatial Hashing using Regular Grid
	Slide 33: Spatial Hashing using Regular Grid
	Slide 34: Space Partitioning with K-D Tree
	Slide 35: Space Partitioning with K-D Tree
	Slide 36: Space Partitioning with K-D Tree
	Slide 37: Bounding Volume Hierarchy (BVH)
	Slide 38: Example of BVH Data Structure in C++
	Slide 39: Evaluation of BVH using Recursion
	Slide 40: Top-down Approach to Build BVH
	Slide 41: Linear BVH: Fully Parallel Construction
	Slide 42: Linear BVH: Fully Parallel Construction
	Slide 43: Linear BVH: Fully Parallel Construction
	Slide 44: From Morton Code to BVH Tree
	Slide 45: Reference
	Slide 46: Reference
	Slide 47: Reference on Linear-BVH
	Slide 48: Further Study

