Ray Casting

What is a Ray（half line，半直線）？

direction

origin

```
struct{
    Vector3d origin;
    Vector3d direction;
};
```


Rasterization vs Ray Casting

Rasterization
for each triangle
for each pixel (x, y)
if (x, y) is inside triangle framebuffer[x,y]=shade()

Ray Casting

```
for each pixel (x,y)
    for each triangle
    if ray hits triangle
        framebuffer[x,Y]=shade()
```


Ray at Pixel: 3x3 Homography Matrix

$$
\begin{aligned}
& \text { ray from camera } \\
& \vec{s}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}, \vec{d}=\left\{\begin{array}{l}
x \\
y \\
f
\end{array}\right\}
\end{aligned}
$$

Ray at Pixel: 4x4 Homography Matrix

Perspective projection (P)

$$
\begin{aligned}
& \vec{s}=H^{-1} \vec{s}^{\prime} \\
& \vec{t}=H^{-1}\left(\vec{t}^{\prime}-\vec{s}^{\prime}\right)
\end{aligned}
$$

Homography

 transformation H

Rendering Equation [Kajiya 1986]

$$
L_{o}\left(\vec{p}, \vec{\omega}_{0}\right)=\int_{\Omega} f\left(\vec{\omega}_{0}, \vec{\omega}_{i}\right) L_{i}\left(\vec{p}, \vec{\omega}_{i}\right)\left(\vec{\omega}_{i} \cdot \vec{n}\right) d \vec{\omega}_{i}
$$

James T. Kajiya. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20, 4

Environment Map

Far light approximation: $L_{i}\left(\vec{p}, \vec{\omega}_{i}\right) \simeq L_{i}\left(\vec{\omega}_{i}\right)$

High Dynamic Range (HDR) Image

Image from PolyHaven: https://polyhaven.com/a/rooitou_park

Ambient Light: Uniform Light

- Omni-directional, uniform color, uniform intensity
- (ambient light) + (no occusion) + (Lambertian reflection)
= constant reflection

Ambient Occlusion: Occlusion Ratio For Ambient Light

$$
A_{\vec{p}}=\frac{1}{\pi} \int_{\Omega} V_{\vec{p}}(\vec{\omega})(\vec{n} \cdot \vec{\omega}) d \vec{\omega}
$$

normalizing constant
$A_{\vec{p}}=1$: no occlusion

Example of Ambient Occlusion

- Ambient occlusion is fully depends on geometry

Monte Carlo Integration

- Integration of a "difficult" function (i.e., we can only evaluate at discrete sample locations)
$I=\int_{\Omega} f(x) d x$
approximation

Acceleration: Importance Sampling

- Sample densely where the integrand is large
$E(f(X)) \simeq \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)$

$$
E(f(X)) \simeq \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{\operatorname{pdf}\left(x_{i}\right)}
$$

$$
x_{1}, \ldots, x_{N} \in \Omega
$$

Probablity Density Function（PDF，確率密度関数）

－PDF is a density，not prbobablity itself so tometime exceed 1

$$
\begin{aligned}
& \operatorname{pdf}(x)>0 \text { for all } x \in \Omega \\
& \int_{\Omega} \operatorname{pdf}(x) d x=1 \\
& P(a \leq X \leq b)=\int_{a}^{b} \operatorname{pdf}(x) d x
\end{aligned}
$$

Inverse Transform Method

Cumulative distribution function

$$
\begin{aligned}
& u_{i} \sim U(0,1) \\
& x_{i}=\operatorname{cdf}^{-1}\left(u_{i}\right) \sim \operatorname{pdf}(X)
\end{aligned}
$$

Cosine Importance Sampling

Uniform sampling over hemisphere: $\operatorname{pdf}\left(\omega_{i}\right)=\frac{1}{2 \pi}$

$$
A_{\vec{p}} \simeq \frac{1}{\pi} \frac{1}{N} \sum_{i=1}^{N} \frac{V_{\vec{p}}(\vec{\omega})(\vec{n} \cdot \vec{\omega})}{\operatorname{pdf}\left(\omega_{i}\right)}=\frac{2}{N} \sum_{i=1}^{N} V_{\vec{p}}(\vec{\omega})(\vec{n} \cdot \vec{\omega})
$$

Cosine importance sampling: $\operatorname{pdf}\left(\omega_{i}\right)=\frac{\vec{n} \cdot \vec{\omega}_{i}}{\pi}$

$$
A_{\vec{p}} \simeq \frac{1}{\pi} \frac{1}{N} \sum_{i=1}^{N} \frac{V_{\vec{p}}(\vec{\omega})(\vec{n} \cdot \vec{\omega})}{\operatorname{pdf}\left(\omega_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} V_{\vec{p}}(\vec{\omega})
$$

Strategy for Cosine Importance Sampling

- Polar coodinate θ, ϕ
- the Jacobian for polar coordinate: $\sin \theta$
- $\operatorname{pdf}(\theta)=\sin \theta \cos \theta$
- Cumulative distribution: $\operatorname{cdf}(\theta)=\int \operatorname{pdf}(\theta) d \theta=\cos ^{2} \theta$
- Inverse cumulative distribution: $\operatorname{cdf}^{-1}(x)=\cos ^{-1}(\sqrt{x})$

Local Illumination vs Global Illumination

Light come only from lighting

Every surface is lightsource

Ray Triangle Collision

Bounding Volume Hierarchy (BVH)

- Near triangles are in the same branch
- Each node has a BV that includes two child BVs

Example of BVH Data Structure in C++

index	0	1	2	3	4	5	6
left-child index	1	3	4	tri index	tri index	tri index	tri index
Right-child index	2	5	6	-1	-1	-1	-1
BV data	\ldots						


```
template <class T>
class CNodeBVH {
    unsigned int ichild_left;
    unsigned int ichild_right;
    T BV;
};
std::vector<CNodeBVH<CAABB>> aNodeBVH;
```


Evaluation of BVH using Recursion

- Ask question to the root node -> if true the node asks the same question to two child nodes and so on

Top-down Approach to Build BVH

- Use PCA for separating triangles into two groups

Linear BVH: Fully Parallel Construction

- Construct BVH based on Morton code (i.e., Z-order curve)
- Two cells with close Morton codes tends to be near

2D square domain with 2^{n} edge division
$\Rightarrow 2^{2 n}$ number of cells
Cell index is size of $2 n$ in binary

Linear BVH: Fully Parallel Construction

- Convert XYZ coordinate into 1D (linear) integer coordinate

Linear BVH: Fully Parallel Construction

- Sort objects by their Morton codes

From Morton Code to BVH Tree

- Divide tree when digits of sorted Morton codes are different

Reference on Linear-BVH

- Thinking Parallel, Part III: Tree Construction on the GPU

by Tero Karras

https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/

