Rasterization

Rasterization

Vertex
Shader

Rasterizer

1Y ~ canonical
4 view volume
Mz
Looking
from Z*®

Fragment
Shader

Extract the pixels whose
center is inside the triangle

O ® | inside

‘\
\.\\

outside

Rasterizer and Interpolation

Vertex Fragment

Shader Shader
‘ =

® vertex attributes:
| color, normal, UV-coordinate...etc

. _/

Why You Need to Understand Rasterization?

* Understand modern gamlng engine archtecture

© 2004-2020, Epic Games Inc AII"rlghts reserved Unreal and |ts Iog are Epic’s
trademarks or registered trademarks in the US and elsewhere.

Why You Need to Understand Rasterization?

* Differentible rendering, inverse rendering

parameter image
0 rendering 7(3)
shape, p 07 (6)
material, : 00
lighting

Hose inverse rendering
—

...etc

Example of Differentiable Rendering

Target:

Large Steps in Inverse Rendering of Geometry,
Baptiste Nicolet Alec Jacobson Wenzel Jakob
In ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2021)

Rasterization: The First Step

Orthongonal projection in Triangle in the image
cannonical view volume coordinate
(1,1,1) (1,1,-1) (0,0) (w,0)
111]
T e a
% s N
I
W e
(-1,-11) L
(1,-1,1) (1,-1,-1) (0,H) (W,H)

Regular Grids

* Most common discretization for spatial values

Let’s find out the corresponding
grid cell for (py, py)

Check it out!

‘ -~ - '

L] L]
ooy, SP s
feme we
e

V « f

Inside & Outside Test at the Center of Pixel

* Extract the pixels whose center is inside the triangle

to fragment shader

Triangle Inside & Outside Test

* Edge connecting a = {ax, a,, 1}T and b = {bx, by, 1}T

5 homogenous coordinate!
C

Left side: (&XE) -p >0

Right side: (&XB) -p <0

QL

Triangle Inside & Outside Test

* Check if the signs are the same for all the three edges

Optimizing Test 1: Bounding Box

Optimizing Test 2: Pineda’s Algorithm

Juan Pineda. 1988. A parallel algorithm for polygon rasterization. In Proceedings of the 15th
annual conference on Computer graphics and interactive techniques (SIGGRAPH '88).

Distortion Iin Perspective Interpolation

a:b #a':b’

Farther region
"\‘ b shrink on the screen

Interpolation on Screen vs Object

top view

project then

interpolate

“Gouraud”
interpolation

o
S,

Image Credit: Darkness3560 @ Wikipedia

interpolate then

project
perspectively correct
interpolation

oy
o

o

Perspectively Correct Interpolation

naive interpolation (bad) perspective correct interpolation | z-buffer

N

Perspectively Correct Interpolation

h Barycentric coordinate
- - 7 -
p=aa+ b+ yc
{x - -
C a
o e e
T
::: ﬁ What are the weights
T LV a By
= '
SSSEE

Simple Perspective

* Projecting p(x, y, z) on the image plane z = f (f: focal length)

O~ O
- o

Baricentric Weights for Interpolation

* Distributive property of matrix
a, 3,y must satisfy

a+p+y=1
X x' f 0 O Py
{3’} X {y’} =10 f Ofp 4 degrees of freedom,
1 w 0 0 1. 4 constraints
= H(ad + Bb + y)

= (Hd)a + (HB)B + (HO)y v

How To Remove Order Dependency?

* Since shader is executed in parallel, difficult to handle occlusion

\\\E\

\ N

L/]
y I |

flrst/\ then\» .

Z-Buffer Algorithm

* Frame-buffer that keeps minimum depth for each pixel

prd for each triangle
it for each pixel (x,Y)
jii T if (x,y) is inside triangle
il 1T | compute z
1l 1f z < zbuffer([x,v]
B PR i o zbuffer[x,vy]=z
[[] N framebuffer[x, y]=shade ()
h T~

~

Z-Fighting

* Flickering when different triangles has the same (or similar) depth

Z-Fighting - Interactive 3D Graphics Image Credit: Wojciech Muta @ Wikipedia
https://www.youtube.com/watch?v=CjckWVwd2ek

Biproduct of Z-buffer Method: Depth Ima

* Depth Image can be used for various geometry processing

Depth Image Usage 1: Contour Drawing

* Non-photo realistic (NPR) rendering

depth image depth naive NPR rendering
discontinuity diffuse shading with contour

[1] Bénard, Pierre, and Aaron Hertzmann. "Line drawings from 3D models: A tutorial."
Foundations and Trends® in Computer Graphics and Vision 11, no. 1-2 (2019): 1-159.

Depth Image Usage 2: DoF Effect

* Depth of field (DoF, 5 57 %EE)

I ¥ ' . ¥y \
Depth Of Fleld 2 r fem .cl Q'l"'.illt . 1»“‘" v
g are using. 1If you the

he depth of field wi
ce to infinity.<] Forx

pmera has a hyperh
S AASMAE A% A B eel,

image from wikipedia

P\ |

* Shallows depth of field = small range of focus, large appature
 Deep depth of field = pan focus, small appature

Depth Image Usage 3: Shadow Mapping

* Rendering image from light to find occlusion of light

e

Image with

shadow \ depth map

Image credit: Image credit:
Praetor alpha @ Wikipedia Praetor alpha @ Wikipedia

Depth Image Usage 4: Collision Detection

 Compute volume of intersection and its derivative

Vi AT
-/ : : i

E mwe ERVA

¥

Jérémie Allard, Francois Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez, and Paul G. Kry. 2010.
Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29, 4, Article 82 (July 2010)

Acceleration Method 1: Culling

* Reduce number of triangle rasterized

View-frustum culling

-~

Occlusion Culling

Frustum
Cohen-0r, Daniel & Chrysanthou, Yiorgos & Silva, Claudio. (2001). A Survey of Visibility for Walkthrough Applications. Proceedings
of SIGGRAPH.

Acceleration Method 2: Level of Detail (LoD)

* Dynamically change the resolution of mesh

near

Hoppe, H. Progressive meshes. In Computer Graphics (SIGGRAPH'96 Proceedings).

Nanaite in Unreal Engine 5

Nanite in UES: The End of Polycounts? | Unreal Engine
https://www.youtube.com/watch?v=xUUSsXswyZM

Sub-pixel Effects

Removing Jaggy Edge: Anti-Aliasing

B

aliased anti-aliased

How to Compute the “Coverage Ratio”?

visible inside the pixel

What is the area of <] }
?

Monte Carlo Integration

* Integration of a “difficult” function (i.e., we can only evaluate at

discrete sample Iocatlons)
= dx
[= f(x)dx apprOX|mat|on f(xl) Q
XN e ()
f(x1)

f(xz)

<;>L 5

Q) X1 X9 X3

Basic Approach: Multiple Samples in a Pixel

* Finding coverage ratio approximately

Sample at center Multiple samples

L=

ave ragel

SuperSampling vs. MultiSampling

SuperSampling MultiSampling
fragment shader fragment shader
for all samples for one sample

shade () / shade ()

 average average

Transparency is Order Dependent

* Alpha value inside one pixel

* 0 —» completely transparent EEEEEEEE
E B EEEEEDR
* 1 - opaque EEEEEERESR ab
E B EEEEEDR
A B EEREEREEDR »
back: @y, Cy HHN
—
ar

a=ar+ ab(l — af)
Ca = Cras + Cbab(l — af)
Not symetric/

front: C(f, Cf

Painter’s algorithm

e Sort geometry w.r.t. dpeth
* Draw from background

Image Credit: Wojciech Muta @ Wikipedia

ANa.

Image Credit: Zapyon @ Wikipedia

Ao

¥

* ® Cannot draw in parallel
* ® Cannot handle cyclical overlapping

Depth Peeling Technique [Evenritt et al]

* Use two depth buffer to render object fron to back

Pass 1 Pass 2 Pass 3

Image credit: (RHEHAEZE, 200841 1 A2 3 H Depth Pealing [Evenritt et al]
https://marina.sys.wakayama-u.ac.jp/~tokoi/?date=20081123

Everitt, Cass (2001-05-15). "Interactive Order-Independent Transparency" (PDF). Nvidia

