
Solving Constraints v.s. Optimization

Solution should be 
on this line

Solution should be at the 
bottom of this hole



Graph Laplacian Matrix as Constraints
• 𝐿�⃗� = 0 means all the vertices are average of connected ones 
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Graph Laplacian Matrix as Optimization
• 𝐿Φ = 0 means sum of square difference is minimized
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Laplacian in Continum Domain
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∇𝜙 $𝑑𝑉

Dirichelet energy!



Partial Differential Equation 
(PDE)
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Nabla Operator
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Nabla:

Gradient:

Divergence:



Gauss Divergence Theorem
• Convert volume integration to surface integration
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+
&
∇ ⋅ �⃗� 𝑑V = +

'&
𝑛 ⋅ �⃗� 𝑑𝑆



Chain Rule of Nabla Operator
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∇ ⋅ 𝜙�⃗� = ∇𝜙 (�⃗� + 𝜙(∇ ⋅ �⃗�)



Laplace Equation

∇ ⋅ ∇𝜙 = 0

∇ ⋅ ∇𝜙 = 0 𝑖𝑛 Ω

𝜙 = 𝜙) 𝑜𝑛 𝜕Ω



Finite Difference Method
•Approximate PDE with differences

∇ ⋅ ∇𝜙 =
𝜕$𝜙
𝜕𝑥$

+
𝜕$𝜙
𝜕𝑦$

= 0



Solution with Finite Element Method
• Solution of Laplace equation minimize Dirichlet energy 

∇ ⋅ ∇𝜙 = 0 𝑊 = ' ∇𝜙 !𝑑Ω

Dirichlet energy 



Solution with Finite Boundary Method
• Represent solution with the fundermental solution of Laplacian

∇ ⋅ ∇𝜙 = 0

∇ ⋅ ∇𝜙 = 𝛿(𝑥)

𝜙 = 𝑥 1 dim.

𝜙 = 1
2𝜋
log 𝑥 2 dim.

𝜙 = − "
%/ 0

3 dim.

fundermental solution 



Solution with Mean Value Theorem
•Mean value theorem: solution is average of the value on the 

small sphere

𝜙 = 𝜙) 𝑜𝑛 𝜕Ω

𝑥

𝜙(𝑥) =
1
ℬ +

ℬ
𝜙 𝑦 𝑑𝑦

ℬ

∇ ⋅ ∇𝜙 = 0

• Mean value coordinate
• Walk-on-sphere method



Poisson Image Editing
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Naïve Blending (1D)
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ℎ:target 𝑔: source

Discontinuity!!



Gradient Domain Blending (1D)
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ℎ:target 𝑔: source

𝑓: solution
fixed boundary 
condition



Gradient Domain Blending (2D)
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Ω

𝜕Ω
ℎ:target



Weak Form of PDE
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𝑊(𝑓) = 8
.

∇ 𝑓 − 𝑔 $ 𝑑V ̅𝑓 = argmin
/

𝑊 𝑓

∇ ⋅ ∇ ̅𝑓 = ∇ ⋅ ∇g

Poisson’s equation

Fixed 



Purturbation of Solution

19
𝑥" 𝑥# 𝑥$ 𝑥%

𝑓

𝛿𝑓 = 0

𝛿𝑓 = 0



Weak Form of PDE
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𝑊(𝑓) = :
1

∇𝑓 − ∇𝑔 # 𝑑V ̅𝑓 = argmin
2

𝑊 𝑓

𝛿𝑊 𝑓, 𝛿𝑓 = :
1

∇(𝑓 + 𝛿𝑓) − 𝛿𝑔 3 ∇(𝑓 + 𝛿𝑓) − ∇𝑔 𝑑V −𝑊(𝑓)

= 2:
1

∇𝛿𝑓 4∇ 𝑓 − 𝑔 𝑑𝑉

𝛿𝑊 ̅𝑓, 𝛿𝑓 = 0, ∀𝛿𝑓
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∇ ⋅ 𝜙�⃗� = ∇𝜙 (�⃗� + 𝜙(∇ ⋅ �⃗�)

∇ ⋅ 𝛿𝑓∇ 𝑓 − 𝑔 = ∇𝛿𝑓 (∇ 𝑓 − 𝑔 + 𝛿𝑓 ∇ ⋅ ∇(𝑓 − 𝑔)

𝜙 = 𝛿𝑓, �⃗� = 𝑓 − 𝑔

+



Gauss-Seidel Method
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• Solve & update solution 𝒙 row-by-row

𝑎!! 𝑎!" ⋯ 𝑎!#
𝑎"! 𝑎"" ⋯ 𝑎"#
⋮ ⋮ ⋱ ⋮
𝑎#! 𝑎#" ⋯ 𝑎##

𝑥!
𝑥"
⋮
𝑥#

=

𝑏!
𝑏"
⋮
𝑏#

𝑎!!𝑥! + 𝑎!"𝑥" + ⋯+ 𝑎!#𝑥# = 𝑏!
𝑥! = (𝑏! − 𝑎!"𝑥" − ⋯− 𝑎!#𝑥#)/𝑎!!

𝑎#!𝑥! + 𝑎#"𝑥" + ⋯+ 𝑎##𝑥# = 𝑏#
𝑥# = (𝑏# − 𝑎#!𝑥! − 𝑎#"𝑥" − ⋯ )/𝑎##



Gauss-Seidel Method in a Grid
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Only I can move to satisfy 
constraint or to minimize energy

It’s my turn !



Gauss-Seidel Method in Matrix Form
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𝑥0 = 𝐷 + 𝐿 12 𝑏 − 𝑈𝑥012

𝐷 + 𝐿 𝑥0 + 𝑈𝑥012 = 𝑏

𝐷 + 𝐿 + 𝑈 𝑥 = 𝑏



Jacobi Method

2. Update solution at the same time as 𝒙 = 𝒙′
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𝑎!! 𝑎!" ⋯ 𝑎!#
𝑎"! 𝑎"" ⋯ 𝑎"#
⋮ ⋮ ⋱ ⋮
𝑎#! 𝑎#" ⋯ 𝑎##

𝑥!
𝑥"
⋮
𝑥#

=

𝑏!
𝑏"
⋮
𝑏#

𝑎!!𝑥! + 𝑎!"𝑥" + ⋯+ 𝑎!#𝑥# = 𝑏!
𝑥!′ = (𝑏! − 𝑎!"𝑥" − ⋯− 𝑎!#𝑥#)/𝑎!!

𝑎#!𝑥! + 𝑎#"𝑥" + ⋯+ 𝑎##𝑥# = 𝑏#
𝑥#′ = (𝑏# − 𝑎#!𝑥! − 𝑎#"𝑥" − ⋯ )/𝑎##

1. Solve each row independently to obtain 𝒙′



Jacobi Method in Matrix Form
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𝑥0 = 𝐷12 𝑏 − 𝐿 + 𝑈 𝑥012

𝐷𝑥0 + (𝐿 + 𝑈)𝑥012 = 𝑏

𝐷 + 𝐿 + 𝑈 𝑥 = 𝑏



Stencil of a 2D Regular Grid

27

credit: bukk @ wikipedia

stencil in real life

0 −1 0
−1 4 −1
0 −1 0

graph Laplacian stencil

• Stencil represents the diagonal & off-
diagonal component of matrix for a row

diagonal component



Red-Black Ordering for Regular Grid
• The data of same color can be processed in any order (no-

synchronization is necessary for parallel computation)
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Process all the black 
points in parallel

Synchronize threads

Process all the red points 
in parallel

Synchronize threads



Lagrangian vs. Eulerian



Temperature of a River
• How to record the history of temperature of the flowing water?



Reference Frames

Lagrangian
Observation point is moving 
together with flow

Eulerian
Observation point is fixed



Material Derivative
•Measuring the change of the temperature on the carousel  



Data Structure for Continuum
Lagrangian
(e.g., deformable mesh)

Observation points moves over time

Eulerian
(e.g., regular grid)

Observation points don’t move



Regular Grids
•Most common discretization for spatial values

ℎ

Let’s find out the corresponding 
grid cell for (𝑝$ , 𝑝%)

Check it out!



Lagrange Multiplier Method
ラグランジュ未定乗数法



Why Constraints?
• Solid deformation

• Non penetration constraints
• Fluid

• incompressibility constraints: vortex

Credit: Astrobob @ WikipediaCredit: Damnsoft 09 @ Wikipedia



Not Minimum If Its Gradient is not Zero 

𝑊 𝑥 = 20

𝑊 𝑥 = 10

𝑊 𝑥 = 5 This direction 
decreases W(�⃗�)

This direction 
increase 𝑊(�⃗�)
(opposite direction decrease)



Maybe Minimum if Gradient is Zero 
• Find a candidate where the gradient is zero ∇𝑊 �⃗� = 0

∇𝑊 �⃗� = 0
maybe minimum

∇𝑊 �⃗� ≠ 0
not minimum

find the root of gradient! 



Optimization with Constraint
• Find a point �⃗� where the function 𝑊(�⃗�) is minimized while 

satisfying 𝑔 �⃗� = 0

𝑔 �⃗� = 0

𝑊 �⃗� = 20

𝑊 �⃗� = 10

𝑊 �⃗� = 5

𝑔 �⃗� = 0 is an implicit 
surface representation

argmin
)⃗⊂ )⃗|5 )⃗ 67

𝑊(�⃗�)
argmin

)⃗
𝑊(�⃗�)



Abstract View of the Solution Space

space for all the possible �⃗�

𝑔 �⃗� = 0

space satisfying 
constraint  𝑔 �⃗� = 0

argmin
)⃗⊂ )⃗|5 )⃗ 67

𝑊(�⃗�)

argmin
)⃗

𝑊(�⃗�)



Lagrange Multiplier Method
• At minimum point, two gradients ∇𝑊, ∇𝑔 should be parallel 

∇𝑊

∇𝑔

∇𝑊 ∥ ∇𝑔

∃𝜆 ≠ 0 𝑠. 𝑡. ∇𝑊 = λ∇𝑔

je ne sais quoi! 



Why Parallel at Constrained Minimum? 
• If ∇𝑊, ∇𝑔 are not parallel, smaller 𝑊(𝑥) exists satisfying constraints

∇𝑊

∇𝑔 ∇𝑊

∇𝑔

smaller W(𝑥) satisfying constraints



Find Saddle Point not Minima for LM Method

∇𝑊 �⃗� = λ∇𝑔 �⃗�

•We changed minimization problem to saddle point finding problem

∇ T𝑊 �⃗�, λ = 0 𝑤ℎ𝑒𝑟𝑒 T𝑊 �⃗�, λ = 𝑊 �⃗� − λ𝑔 �⃗�

saddle point

Credit: Nicoguaro @ Wikipedia

Don’t minimize T𝑊 �⃗�, λ . Find 
where the gradient is zero 
using the Newton method



Lin. System for Lagrange Multiplier Method
∇𝑊 �⃗� − λ∇𝑔 �⃗�

−𝑔 �⃗� = 𝐻 �⃗�, 𝜆 = 0

𝑑�⃗�
𝑑𝜆

= − ∇𝐻 I"𝐻

= − ∇#𝑊 �⃗� − λ∇#𝑔 �⃗� −∇𝑔 �⃗�
−∇𝑔 �⃗� 0

∇𝑊 �⃗� − λ∇𝑔 �⃗�
−𝑔 �⃗�

Newton-Raphson method

find the root! 



Let’s Practice Lagrange Multiplier Method
Maximize 𝑓 𝑥, 𝑦 = 𝑥 + 𝑦 where 𝑔 𝑥, 𝑦 = 𝑥# + 𝑦# − 1 = 0

check it out!


