Solving Constraints v.s. Optimization

Solution should be at the bottom of this hole

Graph Laplacian Matrix as Constraints

- $L \vec{v}=0$ means all the vertices are average of connected ones

$$
L \Phi=0
$$

$$
\Rightarrow\left[\begin{array}{ccccc}
2 & -1 & 0 & -1 & 0 \\
-1 & 4 & -1 & -1 & -1 \\
0 & -1 & 2 & 0 & -1 \\
-1 & -1 & 0 & 3 & -1 \\
0 & -1 & -1 & -1 & 3
\end{array}\right]\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5}
\end{array}\right)=0
$$

Graph Laplacian Matrix as Optimization

- $L \Phi=0$ means sum of square difference is minimized

$$
\begin{aligned}
W & =\frac{1}{2} \sum_{e \subset \mathcal{E}}\left\|v_{e_{1}}-v_{e_{2}}\right\|^{2} \\
& =\frac{1}{2} \vec{v}^{T} L \vec{v}
\end{aligned}
$$

W is minimized $\rightarrow \frac{\partial W}{\partial \vec{v}}=L \vec{v}=0$

Laplacian in Continum Domain

$$
L \Phi=0 \quad W=\sum_{e \subset \mathcal{E}}\left\|\phi_{e_{1}}-\phi_{e_{2}}\right\|^{2}=\Phi^{\mathrm{T}} L \Phi
$$

$$
\nabla \cdot \nabla \phi=0 \quad W=\int_{\Omega}\|\nabla \phi\|^{2} d V
$$

Dirichelet energy!

Partial Differential Equation (PDE)

Nabla Operator

$$
\text { Nabla: } \nabla=\vec{e}_{x} \frac{\partial}{d x}+\vec{e}_{y} \frac{\partial}{d y}+\vec{e}_{z} \frac{\partial}{d z}
$$

Gradient: $\nabla \phi=\vec{e}_{x} \frac{\partial \phi}{d x}+\vec{e}_{y} \frac{\partial \phi}{d y}+\vec{e}_{z} \frac{\partial \phi}{d z}$

Divergence: $\nabla \cdot \vec{v}=\frac{\partial v_{x}}{d x}+\frac{\partial v_{y}}{d y}+\frac{\partial v_{z}}{d z}$

Gauss Divergence Theorem

- Convert volume integration to surface integration

$$
\int_{\Omega} \nabla \cdot \vec{v} d V=\int_{\partial \Omega} \vec{n} \cdot \vec{v} d S
$$

Chain Rule of Nabla Operator
 $$
\nabla \cdot(\phi \vec{v})=(\nabla \phi)^{T} \vec{v}+\phi(\nabla \cdot \vec{v})
$$

Laplace Equation

$$
\nabla \cdot \nabla \phi=0
$$

Finite Difference Method

- Approximate PDE with differences

$$
\nabla \cdot \nabla \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

Solution with Finite Element Method

- Solution of Laplace equation minimize Dirichlet energy

Solution with Finite Boundary Method

- Represent solution with the fundermental solution of Laplacian

$$
\nabla \cdot \nabla \phi=0
$$

fundermental solution

$$
\nabla \cdot \nabla \phi=\delta(x) \square \begin{cases}\phi=|x| & 1 \mathrm{dim} \\ \phi=\frac{1}{2 \pi} \log |x| & 2 \mathrm{dim} \\ \phi=-\frac{1}{4 \pi|x|} & 3 \mathrm{dim}\end{cases}
$$

Solution with Mean Value Theorem

- Mean value theorem: solution is average of the value on the small sphere

$$
\nabla \cdot \nabla \phi=0 \longmapsto \phi(x)=\frac{1}{|\mathcal{B}|} \int_{\mathcal{B}} \phi(y) d y
$$

- Mean value coordinate
- Walk-on-sphere method

$$
\phi=\phi_{0} \text { on } \partial \Omega
$$

Poisson Image Editing

Naïve Blending (1D)

Discontinuity!!

Gradient Domain Blending (1D)

Gradient Domain Blending (2D)

h :target

Weak Form of PDE

$$
W(f)=\int_{\Omega}\|\nabla(f-g)\|^{2} d V \quad \bar{f}=\underset{f}{\operatorname{argmin}} W(f)
$$

Poisson's equation

$$
\nabla \cdot \nabla \bar{f}=\nabla \cdot \nabla \mathrm{g}
$$

Fixed

Purturbation of Solution

Weak Form of PDE

$$
W(f)=\int_{\Omega}\|\nabla f-\nabla g\|^{2} d \mathrm{~V} \quad \bar{f}=\underset{f}{\operatorname{argmin}} W(f)
$$

$$
\delta W(f, \delta f)=\int_{\Omega}\{\nabla(f+\delta f)-\delta g\}^{T}\{\nabla(f+\delta f)-\nabla g\} d V-W(f)
$$

$$
=2 \int_{\Omega}(\nabla \delta f)^{\mathrm{T}} \nabla(f-g) d V
$$

$\delta W(\bar{f}, \delta f)=0, \forall \delta f$

$$
\begin{aligned}
& \nabla \cdot(\phi \vec{v})=(\nabla \phi)^{T} \vec{v}+\phi(\nabla \cdot \vec{v}) \\
& \quad \phi=\delta f, \vec{v}=f-g \\
& \nabla \cdot\{\delta f \nabla(f-g)\}=(\nabla \delta f)^{T} \nabla(f-g)+\delta f\{\nabla \cdot \nabla(f-g)\}
\end{aligned}
$$

$$
\boldsymbol{\downarrow}
$$

Gauss-Seidel Method

- Solve \& update solution \boldsymbol{x} row-by-row

$$
\begin{aligned}
& \left.\begin{array}{|cccc}
\hline a_{11} & a_{12} & \cdots & a_{1 n} \\
\hline a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots
\end{array}\right] \quad \longrightarrow a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} \\
& \Rightarrow x_{n}=\left(b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\cdots\right) / a_{n n}
\end{aligned}
$$

Gauss-Seidel Method in a Grid

Gauss-Seidel Method in Matrix Form

$(D+L+U) x=b$

$(D+L) x^{k}+U x^{k-1}=b$
$x^{k}=(D+L)^{-1}\left(b-U x^{k-1}\right)$

Jacobi Method

1. Solve each row independently to obtain \boldsymbol{x}^{\prime}

$$
\begin{aligned}
& \left.\begin{array}{|cccc}
\hline a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n 2} & \cdots & a_{1} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \longrightarrow a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& \left.\begin{array}{|llll}
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[x_{n}\right\rfloor \quad\left[b_{n}\right\rfloor \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} \\
& \Rightarrow x_{n}{ }^{\prime}=\left(b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\cdots\right) / a_{n n}
\end{aligned}
$$

2. Update solution at the same time as $\boldsymbol{x}=\boldsymbol{x}^{\prime}$

Jacobi Method in Matrix Form

$$
\begin{aligned}
& (D+L+U) x=b \\
& D x^{k}+(L+U) x^{k-1}=b \\
& x^{k}=D^{-1}\left\{b-(L+U) x^{k-1}\right\}
\end{aligned}
$$

Stencil of a 2D Regular Grid

- Stencil represents the diagonal \& offdiagonal component of matrix for a row

graph Laplacian stencil
stencil in real life

credit: bukk @ wikipedia

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{array}\right] } \\
& \begin{array}{l}
\text { diagonal component }
\end{array}
\end{aligned}
$$

Red-Black Ordering for Regular Grid

- The data of same color can be processed in any order (nosynchronization is necessary for parallel computation)

Process all the black

 points in parallelSynchronize threads

Lagrangian vs. Eulerian

Temperature of a River

- How to record the history of temperature of the flowing water?

Reference Frames

Lagrangian
Observation point is moving together with flow

Eulerian

Observation point is fixed

Material Derivative

- Measuring the change of the temperature on the carousel

Data Structure for Continuum

Lagrangian
(e.g., deformable mesh)

Observation points moves over time

Eulerian
(e.g., regular grid)

Observation points don't move

Regular Grids

- Most common discretization for spatial values

Let's find out the corresponding grid cell for $\left(p_{x}, p_{y}\right)$

Lagrange Multiplier Method

シクランシュニニ＊

Why Constraints?

- Solid deformation
- Non penetration constraints

Credit: Damnsoft 09 @ Wikipedia

- Fluid
- incompressibility constraints: vortex

Credit: Astrobob @ Wikipedia

Not Minimum If Its Gradient is not Zero

Maybe Minimum if Gradient is Zero

- Find a candidate where the gradient is zero $\nabla W(\vec{x})=0$

Optimization with Constraint

- Find a point \vec{x} where the function $W(\vec{x})$ is minimized while satisfying $g(\vec{x})=0$

Abstract View of the Solution Space

Lagrange Multiplier Method

- At minimum point, two gradients $\nabla W, \nabla g$ should be parallel

Why Parallel at Constrained Minimum?

- If $\nabla W, \nabla g$ are not parallel, smaller $W(x)$ exists satisfying constraints

Find Saddle Point not Minima for LM Method

- We changed minimization problem to saddle point finding problem

Credit: Nicoguaro @ Wikipedia

Lin. System for Lagrange Multiplier Method

$$
\binom{\nabla W(\vec{x})-\lambda \nabla g(\vec{x})}{-g(\vec{x})}=H(\vec{x}, \lambda)=0
$$

Newton-Raphson method

$$
\begin{aligned}
\binom{d \vec{x}}{d \lambda} & =-[\nabla H]^{-1} H \\
& =-\left[\begin{array}{cc}
\nabla^{2} W(\vec{x})-\lambda \nabla^{2} g(\vec{x}) & -\nabla g(\vec{x}) \\
-\nabla g(\vec{x}) & 0
\end{array}\right]\binom{\nabla W(\vec{x})-\lambda \nabla g(\vec{x})}{-g(\vec{x})}
\end{aligned}
$$

Let's Practice Lagrange Multiplier Method

Maximize $f(x, y)=x+y$ where $g(x, y)=x^{2}+y^{2}-1=0$

