Solving Constraints v.s. Optimization

Solution should be at the bottom of this hole

Graph Laplacian Matrix as Constraints

• $L\vec{v} = 0$ means all the vertices are average of connected ones

Graph Laplacian Matrix as Optimization

• $L\Phi = 0$ means sum of square difference is minimized

Laplacian in Continum Domain

$$\int D = 0 \qquad W = \sum_{e \in \mathcal{E}} \left\| \phi_{e_1} - \phi_{e_2} \right\|^2 = \Phi^{\mathsf{T}} L \Phi$$

$$\nabla \cdot \nabla \phi = 0 \qquad W = \int_{\Omega} \|\nabla \phi\|^2 dV$$

Dirichelet energy!

4

Partial Differential Equation (PDE)

Nabla Operator

Nabla:
$$\nabla = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_z \frac{\partial}{\partial z}$$

Gradient:
$$\nabla \phi = \vec{e}_x \frac{\partial \phi}{dx} + \vec{e}_y \frac{\partial \phi}{dy} + \vec{e}_z \frac{\partial \phi}{dz}$$

Divergence:
$$\nabla \cdot \vec{v} = \frac{\partial v_x}{dx} + \frac{\partial v_y}{dy} + \frac{\partial v_z}{dz}$$

6

Gauss Divergence Theorem

• Convert volume integration to surface integration

$$\int_{\Omega} \nabla \cdot \vec{v} \, d\mathbf{V} = \int_{\partial \Omega} \vec{n} \cdot \vec{v} \, dS$$

Chain Rule of Nabla Operator

 $\nabla \cdot (\phi \vec{v}) = (\nabla \phi)^T \vec{v} + \phi (\nabla \cdot \vec{v})$

Laplace Equation

$\nabla \cdot \nabla \phi = 0$

Finite Difference Method

Approximate PDE with differences

$$\nabla \cdot \nabla \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

Solution with Finite Element Method

• Solution of Laplace equation minimize Dirichlet energy

 $\nabla \cdot \nabla \phi = 0$

Dirichlet energy

$$W = \int \|\nabla \phi\|^2 d\Omega$$

Solution with Finite Boundary Method

• Represent solution with the fundermental solution of Laplacian

 $\nabla \cdot \nabla \phi = 0$

fundermental solution

$$\nabla \cdot \nabla \phi = \delta(x)$$

$$\phi = |x|$$

$$\phi = \frac{1}{2\pi} \log |x|$$

$$\phi = -\frac{1}{4\pi |x|}$$

$$\phi = -\frac{1}{4\pi |x|}$$

$$\phi = -\frac{1}{4\pi |x|}$$

$$\phi = -\frac{1}{4\pi |x|}$$

Solution with Mean Value Theorem

• Mean value theorem: solution is average of the value on the small sphere

Poisson Image Editing

Gradient Domain Blending (1D)

Gradient Domain Blending (2D)

h:target $\partial \Omega$ Ω

Weak Form of PDE

$$W(f) = \int_{\Omega} \|\nabla (f - g)\|^2 \, dV \qquad \overline{f} = \underset{f}{\operatorname{argmin}} W(f)$$

Poisson's equation

$$\nabla \cdot \nabla \bar{f} = \nabla \cdot \nabla g$$

Fixed

Purturbation of Solution

19

C

$$W(f) = \int_{\Omega} \|\nabla f - \nabla g\|^2 \, dV \qquad \bar{f} = \underset{f}{\operatorname{argmin}} W(f)$$

$$\delta W(f, \delta f) = \int_{\Omega} \{\nabla (f + \delta f) - \delta g\}^T \{\nabla (f + \delta f) - \nabla g\} dV - W(f)$$

$$= 2 \int_{\Omega} (\nabla \delta f)^T \nabla (f - g) dV$$

 $\delta W(\bar{f},\delta f) = 0, \forall \delta f$

Gauss-Seidel Method

• Solve & update solution *x* row-by-row

Gauss-Seidel Method in Matrix Form

(D + L + U)x = b $(D + L)x^{k} + Ux^{k-1} = b$ $x^{k} = (D + L)^{-1}(b - Ux^{k-1})$

Jacobi Method

1. Solve each row independently to obtain x'

2. Update solution at the same time as x = x'

25

Jacobi Method in Matrix Form

$$(D + L + U)x = b$$

$$Dx^{k} + (L + U)x^{k-1} = b$$

$$x^{k} = D^{-1}\{b - (L + U)x^{k-1}\}$$

26

Stencil of a 2D Regular Grid

• Stencil represents the diagonal & offdiagonal component of matrix for a row

graph Laplacian stencil $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \end{bmatrix}$

credit: bukk @ wikipedia

diagonal component

Red-Black Ordering for Regular Grid

• The data of same color can be processed in any order (nosynchronization is necessary for parallel computation)

Lagrangian vs. Eulerian

Temperature of a River

• How to record the history of temperature of the flowing water?

Reference Frames

Lagrangian

Observation point is moving together with flow

Eulerian

Observation point is fixed

Material Derivative

• Measuring the change of the temperature on the carousel

Data Structure for Continuum

Lagrangian (e.g., deformable mesh)

Observation points moves over time

Eulerian (e.g., regular grid)

Observation points don't move

Regular Grids

Most common discretization for spatial values

Let's find out the corresponding grid cell for (p_x, p_y)

Check it out!

Lagrange Multiplier Method

ラグランジュ未定乗数法

Why Constraints?

- Solid deformation
 - Non penetration constraints

Credit: Damnsoft 09 @ Wikipedia

• Fluid

• incompressibility constraints: vortex

Credit: Astrobob @ Wikipedia

Not Minimum If Its Gradient is **not** Zero

Maybe Minimum if Gradient is Zero

• Find a candidate where the gradient is zero $\nabla W(\vec{x}) = 0$

Optimization with Constraint

• Find a point \vec{x} where the function $W(\vec{x})$ is minimized while satisfying $g(\vec{x}) = 0$

Lagrange Multiplier Method

• At minimum point, two gradients ∇W , ∇g should be parallel

 $\nabla W \parallel \nabla g$ \downarrow \downarrow $\exists \lambda \neq 0 \ s.t. \ \nabla W = \lambda \nabla g$

je ne sais quoi!

Why Parallel at Constrained Minimum?

• If ∇W , ∇g are not parallel, smaller W(x) exists satisfying constraints

Find Saddle Point not Minima for LM Method

• We changed minimization problem to saddle point finding problem

Lin. System for Lagrange Multiplier Method

$$\begin{pmatrix} \nabla W(\vec{x}) - \lambda \nabla g(\vec{x}) \\ -g(\vec{x}) \end{pmatrix} = H(\vec{x}, \lambda) = 0$$

Newton-Raphson method
$$\begin{pmatrix} d\vec{x} \\ d\lambda \end{pmatrix} = -[\nabla H]^{-1}H$$
$$= -\begin{bmatrix} \nabla^2 W(\vec{x}) - \lambda \nabla^2 g(\vec{x}) & -\nabla g(\vec{x}) \\ -\nabla g(\vec{x}) & 0 \end{bmatrix} \begin{pmatrix} \nabla W(\vec{x}) - \lambda \nabla g(\vec{x}) \\ -g(\vec{x}) \end{pmatrix}$$

Let's Practice Lagrange Multiplier Method

Maximize f(x, y) = x + y where $g(x, y) = x^2 + y^2 - 1 = 0$

check it out!

