
Numerical Optimization



What is Optimization?
• Find input parameter �⃗� where a cost function 𝑊 �⃗� is minimized  

�⃗�!"#$%&"' = argmin
(

𝑊 �⃗�

�⃗�!"#$%&"'

�⃗�

𝐸



Optimization Solve Many Problems 
•What typical computer science paper looks like:

Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a shared shape space for 
multimodal garment design. ACM Trans. Graph. 37, 6, Article 203 (November 2018), 13 pages. 
DOI:https://doi.org/10.1145/3272127.3275074



Solving Constraints v.s. Optimization

Solution should be 
on this line

Solution should be at the 
bottom of this hole



Solving Constraints v.s. Optimization

Solution should be 
on this line

Solution should be at the 
bottom of this hole

There are many 
weapons to fight

𝐴𝑥 = 𝑏

Linearization



Three Optimization Approaches
• Stochastic Optimization

Requires value 𝑊 �⃗�

Requires gradient ∇𝑊(�⃗�)• Gradient Descent

Requires gradient & hessian 
∇𝑊 �⃗� , ∇(𝑊 �⃗�• Newton Method



Stochastic Optimization



Find Minimum by Random Sampling 1
𝑊
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2. Evaluate 𝑊(�⃗�&)
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Find Minimum by Random Sampling 2 
𝑊

�⃗�

1. Starting from an initial 
guess �⃗�)

2. Evaluate 𝑊(�⃗�&)
3. Make a candidate 
�⃗�′&./ = �⃗�& + 𝑅𝑎𝑛𝑑𝑜𝑚

4. Evaluate 𝑊(�⃗�′&./)

�⃗�&
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Find Minimum by Random Sampling 3
𝑊

�⃗�

1. Starting from an initial 
guess �⃗�)

2. Evaluate 𝑊(�⃗�&)
3. Make a candidate 
�⃗�′&./ = �⃗�& + 𝑅𝑎𝑛𝑑𝑜𝑚

4. Evaluate 𝑊(�⃗�′&./)
5. Move �⃗� to the candidate 

if 𝑊 �⃗�′&./ < 𝑊(�⃗�&)
6. Go to 3

�⃗�&

𝑊(𝑋!)

�⃗�&./

𝑊(𝑋!"#)

smaller



Simulated Annealing Method
Gradually make the random update small during iteration

Credit: Kingpin13 @ Wikipedia

Make the optimization robust to local minima



Stochastic Optimization: Blinded Golf
• Optimizer do not know the direction & strength to hit

Swing in the 
random direction! 



Gradient Descent Method
最急降下法



Gradient Descent Method
• A.k.a “steepest descent method” or “hill climbing method”

�⃗�&

𝑊 𝑥 = 20

W 𝑥 = 10

𝑊 𝑥 = 5

∇𝑊(�⃗�!) �⃗�&./ = �⃗�& − 𝛼∇𝑊(�⃗�&)

Learning rate

∇𝑊 Let’s keep 
going down



Gradient Descent: Blinded Golf with a Guide
• Optimizer know the direction, but do not know strength to hit

Aim that direction! 

OK, but how hard?



Newton-Raphson Method



What is not Minimum
• A point is not minimum if there is a direction changing 𝑊(𝑥)

𝑊 𝑥 = 20

𝑊 𝑥 = 10

𝑊 𝑥 = 5 This direction 
decreases 𝑊(𝑥)

This direction 
increase 𝑊(𝑥)
(opposite direction 

decrease)



What is not Minimum
• A point is not minimum if  ∃𝑑𝑥 ≠ 0 𝑠. 𝑡. ∇𝑊(𝑥) ⋅ 𝑑𝑥 ≠ 0

𝑑𝑊 = ∇𝑊 𝑥 ⋅ 𝑑𝑥 < 0

𝑑𝑓 = ∇𝑓 𝑥 ⋅ 𝑑𝑥 > 0

𝑑𝑊

𝑑𝑊

𝑑𝑥

𝑑𝑥



What Might be Minimum: Zero Gradient

∇𝑊 𝑥 = 0 ∇𝑊 𝑥 ≠ 0

This is necessary condition (not sufficient) 

i.e., at least ∇𝑊 𝑥 needs to be zero 
at the minimum

∇𝑊 𝑥 = 0

Find the root 
of ∇𝑊 𝑥



Finding the Root of a Scalar Function

To find 𝑥 where 𝑓(𝑥) = 0

𝑥&)* = 𝑥& −
𝑓(𝑥&)
𝑓′(𝑥&)

Iterate:

𝑥&

𝑓(𝑥)

𝑥&./

𝑓′(𝑥&)

𝑓(𝑥)

𝑓(𝑥&)

0



Finding the Root of a Multivariate Function

To find �⃗� where 𝑓(�⃗�) = 0

�⃗�&./ = �⃗�& − ∇𝑓(�⃗�&)
1/
𝑓(�⃗�&)

Iterate:

�⃗�&

𝑓(𝑥)

�⃗�&./

𝑓′(�⃗�&)

𝑓(�⃗�)

𝑓(�⃗�&)

0

* ∇𝑓(�⃗�!) need to be invertible

Jacobian matrix



Finding the Root of Gradient ∇𝑊 𝑥 = 0
• Gradient of gradient is called hessian

To find �⃗� where ∇𝑊(�⃗�) = 0

�⃗�&./ = �⃗�& − ∇(𝑊(�⃗�&) 1/∇𝑊(�⃗�&)

Iterate:

To find �⃗� where 𝑓(�⃗�) = 0

�⃗�&./ = �⃗�& − ∇𝑓(�⃗�&)
1/
𝑓(�⃗�&)

Iterate:

𝑓 = ∇𝑊

hessian



Gradient Descent: Golf without Blindfold
• Optimizer know the direction & strength to hit

I can swing with 
confidence



Comparison of Three Approaches

Stochastic Optimization

J Only evaluation of a 
function is necessary

L Very slow
L Not scalable
L Heuristics

Newton Method

J Very fast for almost 
quadratic problem

L Require Hessian
L Complicated Code

Gradient Descent

JOnly gradient is 
necessary

J Very scalable

L Slow
L Parameter tuning



Typical Mistakes in Optimization
• Don’t use numerical difference in gradient or Newton method

(∇𝑊)&=
𝑊 �⃗� + 𝜖𝑒& −𝑊(�⃗�)

𝜖

Not scalable for large DoFs

𝜖

𝜖

𝑊(�⃗�)

Inaccurate around convergence

𝜖

𝑊(�⃗�)



Cost Function Typically has Squared Form

𝑊 �⃗� =
1
2 �⃗�(�⃗�) ! =

1
2 �⃗�

"�⃗�

Hessian:    ∇!𝑊 = ∇�⃗� "∇�⃗� + ∇!�⃗�" �⃗�

Gradient:  ∇𝑊 = ∇𝑔 "�⃗� Exact Hessian 
might be indefinite



Gauss-Newton Method

Δ�⃗� = − ∇!𝑊 �⃗� #$∇𝑊(�⃗�)

Gradient: 
∇𝑊 = ∇𝑔 "�⃗�

Approximated Hessian:
∇!𝑊 ≃ ∇�⃗� "∇�⃗�= − ∇�⃗� "∇�⃗� #$ ∇𝑔 "�⃗�

Δ�⃗� = min
%'⃗

�⃗� + ∇�⃗�Δ�⃗� !

variational form



Blending Grad. Descent & Newton Method

Δ�⃗� = − ∇�⃗� "∇�⃗� #$ ∇𝑔 "�⃗�
Gauss-Newton method

Δ�⃗� = − ∇�⃗� "∇�⃗� +
1
𝛼 𝐼

#$
∇�⃗� "�⃗�

Levenberg–Marquardt method

𝛼 → 0: Gradient Descent Δ�⃗� = −𝛼∇𝑊 �⃗� = −𝛼 ∇�⃗� "�⃗�
𝛼 → ∞: Gauss-Newton Method

∇�⃗�𝑛

𝑚

𝑛 > 𝑚 → ∇�⃗� 7∇�⃗� rank 𝑚
m > 𝑛 → ∇�⃗� 7∇�⃗� rank 𝑛



Advanced Topics
• Stochastic Optimization

• Metropolis Hasting Method
• Meta-heuristic Optimization (Particle Swarm, Evolutionary Algorithm)

• Gradient Descent
• Stochastic Gradient Descent

• Newton Method
• Levenberg–Marquardt method
• L-BFGS method



End


