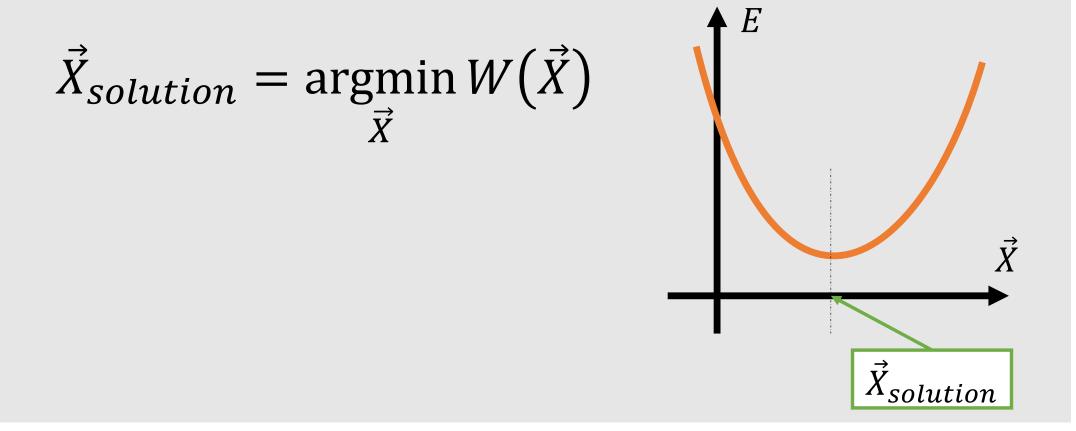
Numerical Optimization

What is Optimization?

• Find input parameter \vec{X} where a cost function $W(\vec{X})$ is minimized



Optimization Solve Many Problems

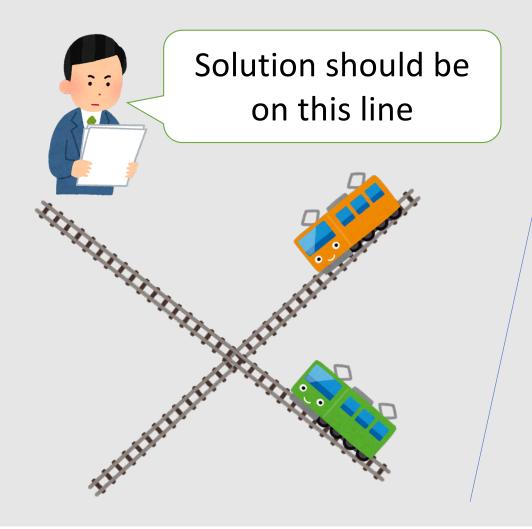
• What typical computer science paper looks like:

a sketch or a parameter sample, and (iii) the reconstruction error of a parameter sample from itself in an auto-encoder fashion. Thus, the combined loss function is defined as: $\mathscr{L}(\mathbf{P}, \mathbf{M}, \mathbf{S}) = \omega_1 ||P - f_{L2P}(f_{S2L}(S))||_2 + \omega_2 ||M - f_{L2M}(f_{S2L}(S))||_2 + \omega_3 ||M - f_{L2M}(f_{P2L}(P))||_2 + \omega_4 ||P - f_{L2P}(f_{P2L}(P))||_2,$ (1)

where $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ denote the relative weighting of the individual errors. We set these weights such that the average gradient of

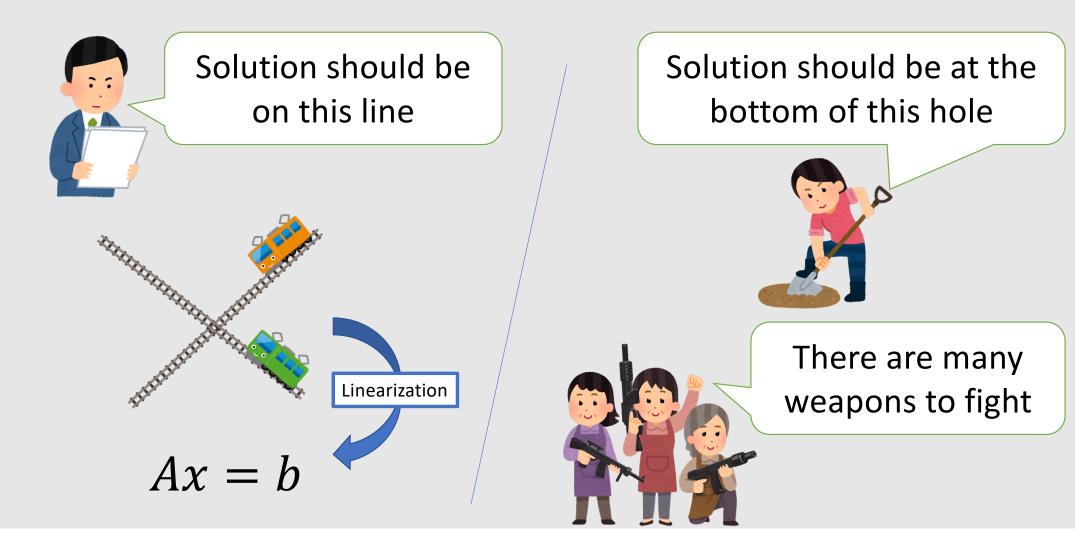
Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a shared shape space for multimodal garment design. ACM Trans. Graph. 37, 6, Article 203 (November 2018), 13 pages. DOI:https://doi.org/10.1145/3272127.3275074

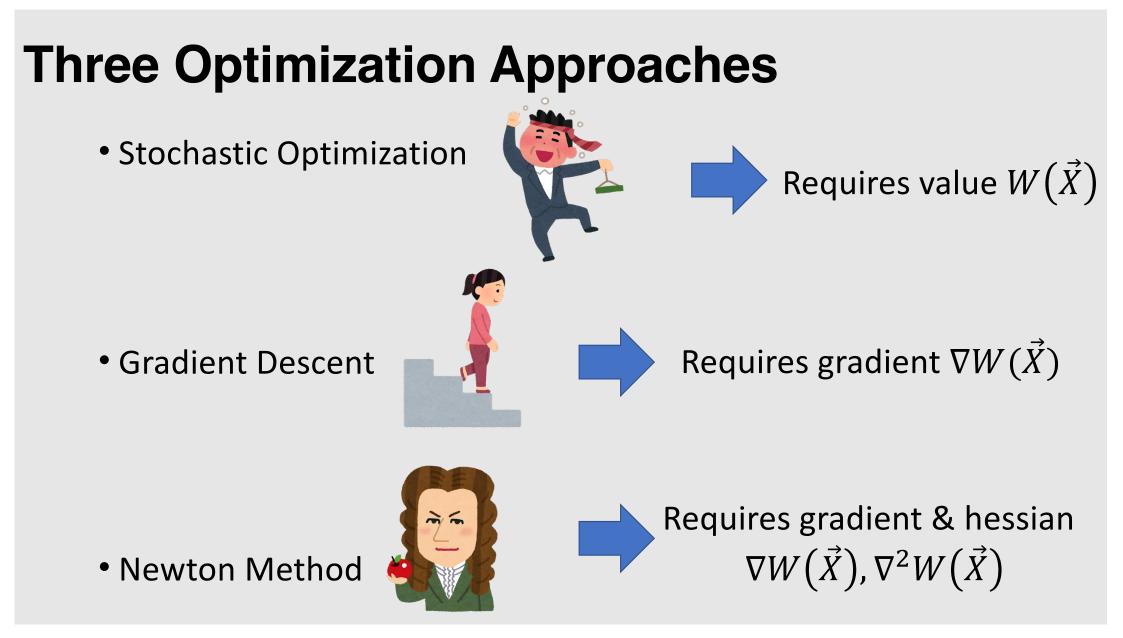
Solving Constraints v.s. Optimization



Solution should be at the bottom of this hole

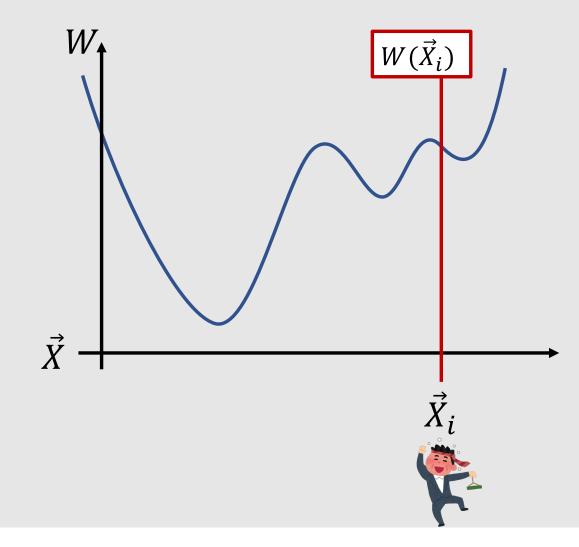
Solving Constraints v.s. Optimization





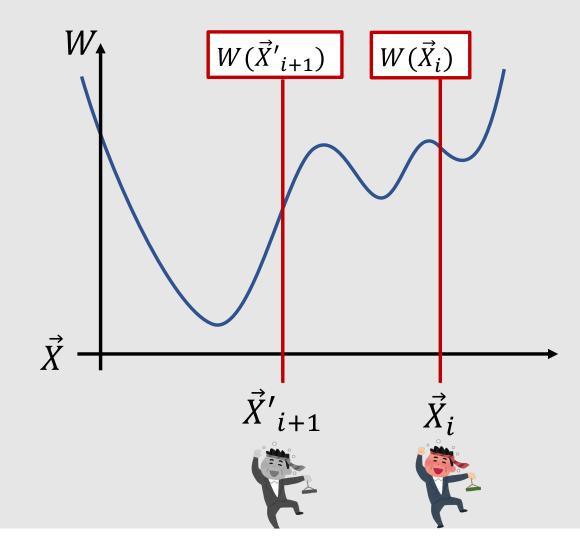
Stochastic Optimization

Find Minimum by Random Sampling 1



- 1. Starting from an initial guess \vec{X}_0
- 2. Evaluate $W(\vec{X}_i)$

Find Minimum by Random Sampling 2

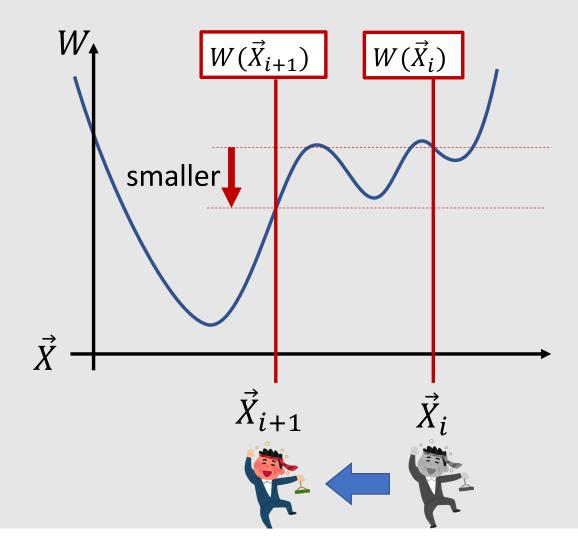


1. Starting from an initial guess \vec{X}_0

- 2. Evaluate $W(\vec{X_i})$
- 3. Make a candidate
 - $\vec{X'}_{i+1} = \vec{X}_i + Random$

4. Evaluate
$$W(\vec{X'}_{i+1})$$

Find Minimum by Random Sampling 3

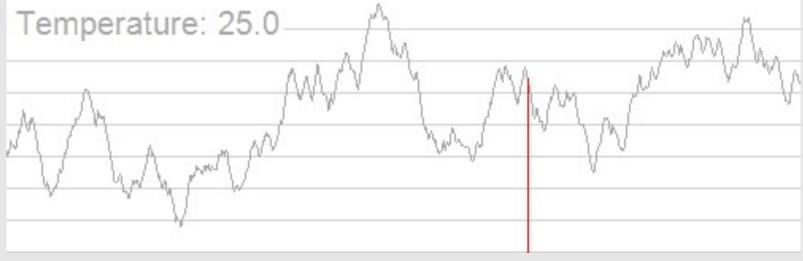


- 1. Starting from an initial guess \vec{X}_0
- 2. Evaluate $W(\vec{X_i})$
- 3. Make a candidate $\vec{X'}_{i+1} = \vec{X}_i + Random$
- 4. Evaluate $W(\vec{X'}_{i+1})$
- 5. Move \vec{X} to the candidate if $W(\vec{X'}_{i+1}) < W(\vec{X}_i)$

6. Go to 3

Simulated Annealing Method

Gradually make the random update small during iteration Make the optimization robust to local minima



Credit: Kingpin13 @ Wikipedia

Stochastic Optimization: Blinded Golf

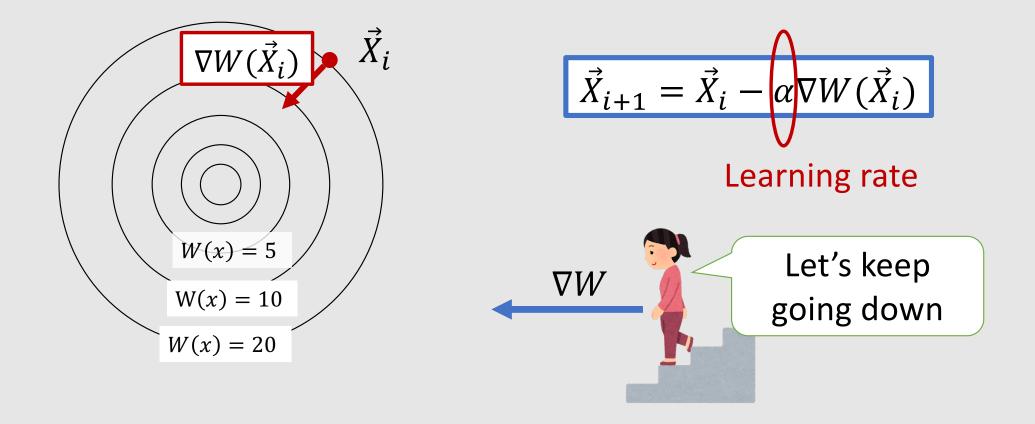
• Optimizer do not know the direction & strength to hit

Gradient Descent Method

最急降下法

Gradient Descent Method

• A.k.a "steepest descent method" or "hill climbing method"



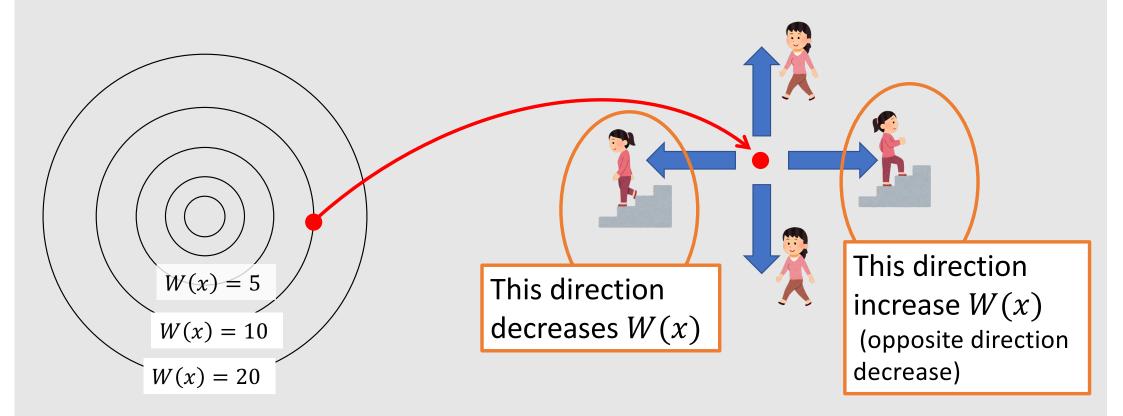
Gradient Descent: Blinded Golf with a Guide

• Optimizer know the direction, but do not know strength to hit

Newton-Raphson Method

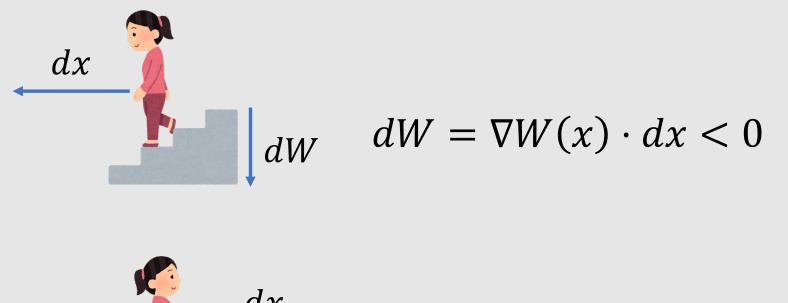
What is not Minimum

• A point is not minimum if there is a direction changing W(x)



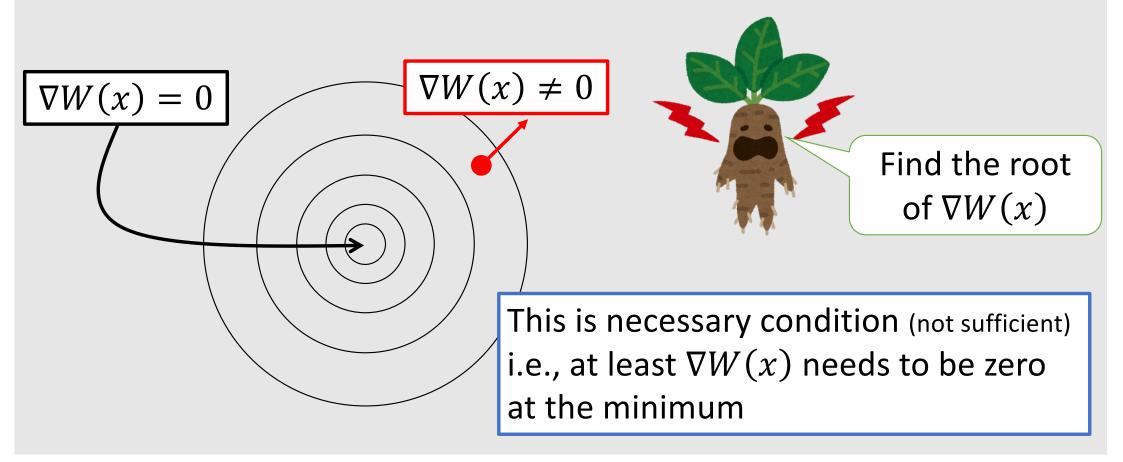
What is not Minimum

• A point is not minimum if $\exists dx \neq 0$ s.t. $\nabla W(x) \cdot dx \neq 0$

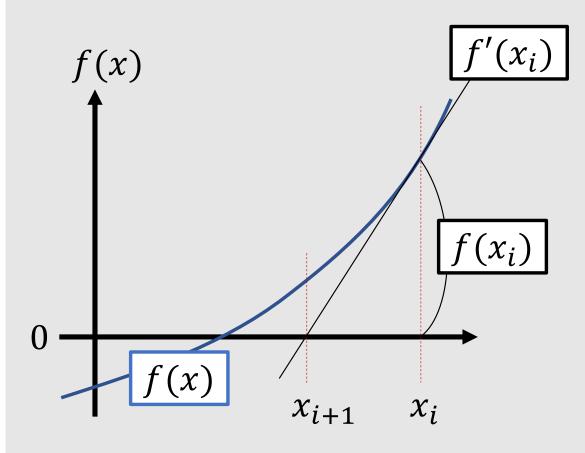


$$dW \quad df = \nabla f(x) \cdot dx > 0$$

What Might be Minimum: Zero Gradient $\nabla W(x) = 0$



Finding the Root of a Scalar Function



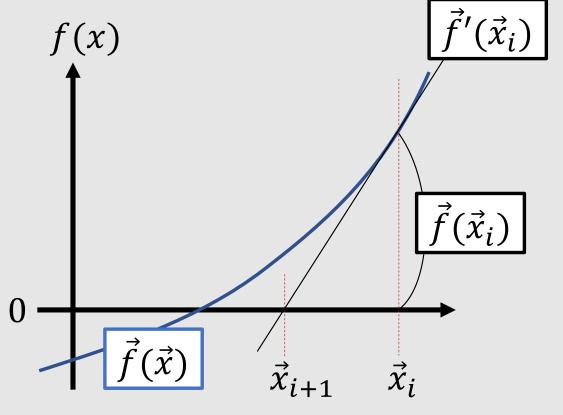
f(x)

To find *x* where f(x) = 0

Iterate:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Finding the Root of a Multivariate Function



To find
$$\vec{x}$$
 where $\vec{f}(\vec{x}) = 0$

Iterate:

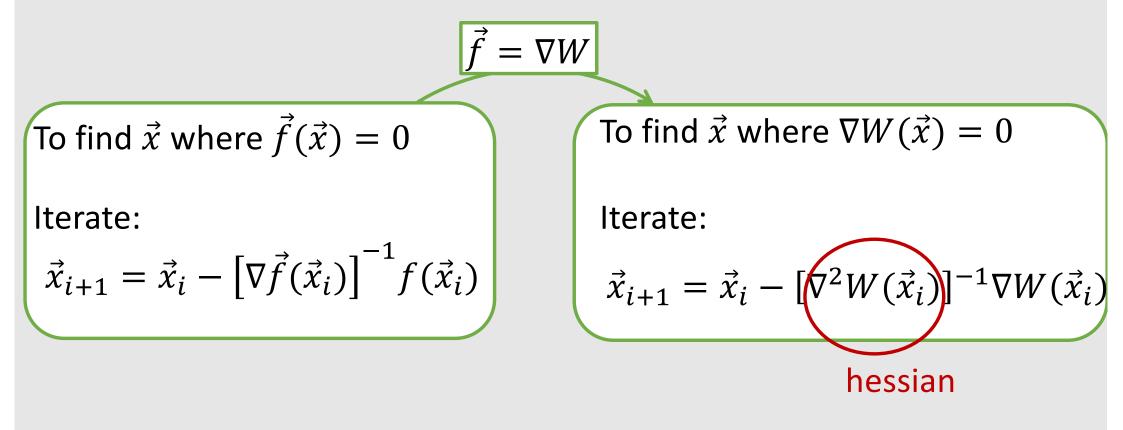
$$\vec{x}_{i+1} = \vec{x}_i - \left[\nabla \vec{f}(\vec{x}_i)\right]^{-1} f(\vec{x}_i)$$

Jacobian matrix

* $\nabla \vec{f}(\vec{x}_i)$ need to be invertible

Finding the Root of Gradient $\nabla W(x) = 0$

Gradient of gradient is called hessian



Gradient Descent: Golf without Blindfold

• Optimizer know the direction & strength to hit

Comparison of Three Approaches

Stochastic Optimization

Only evaluation of a function is necessary

Very slow
 Not scalable
 Heuristics

Gradient Descent

- Only gradient is necessary
- [☺] Very scalable

😕 Slow

Parameter tuning

Newton Method

 Very fast for almost quadratic problem

☺ Require Hessian

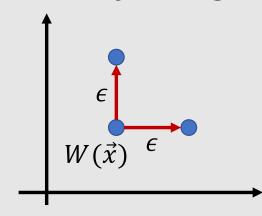
☺ Complicated Code

Typical Mistakes in Optimization

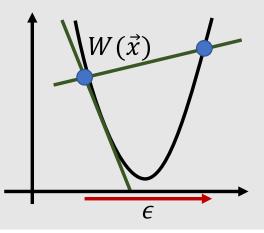
• Don't use numerical difference in gradient or Newton method

$$(\nabla W)_i = \frac{W(\vec{x} + \epsilon \vec{e}_i) - W(\vec{x})}{\epsilon}$$

Not scalable for large DoFs



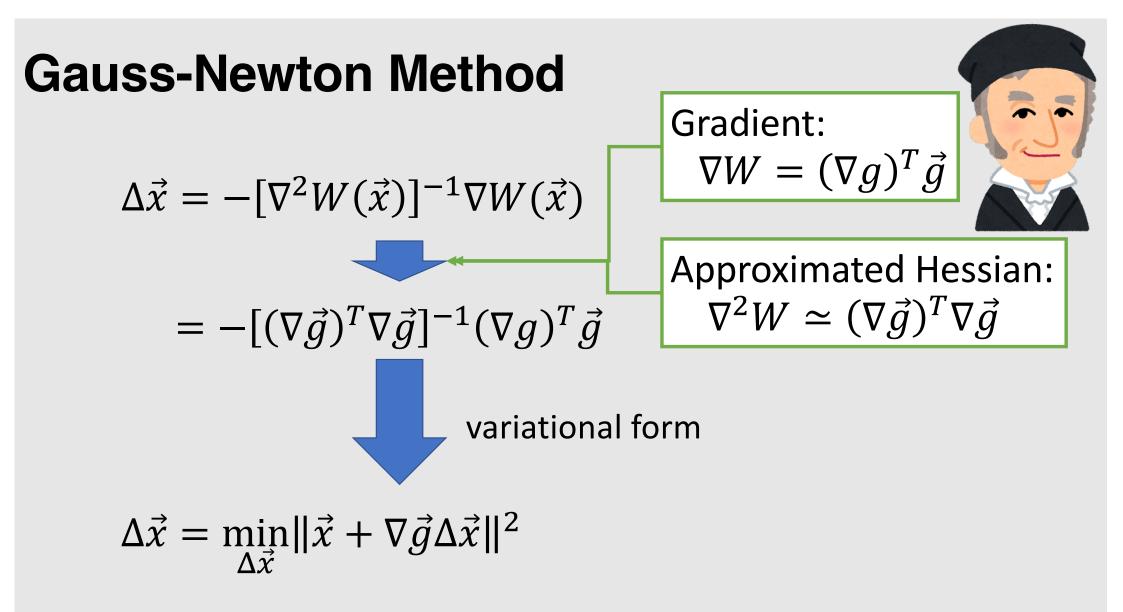
Inaccurate around convergence



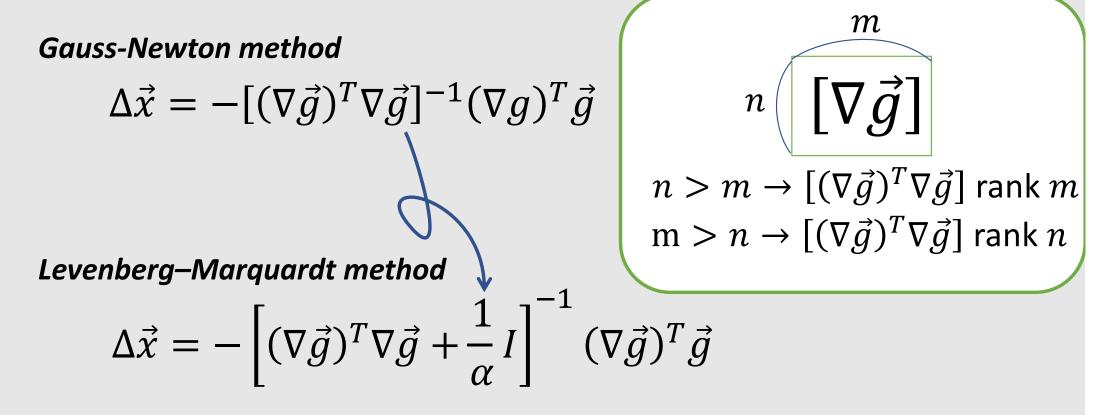
Cost Function Typically has Squared Form

$$W(\vec{x}) = \frac{1}{2} \|\vec{g}(\vec{x})\|^2 = \frac{1}{2} \vec{g}^T \vec{g}$$

Gradient: $\nabla W = (\nabla g)^T \vec{g}$
Hessian: $\nabla^2 W = (\nabla \vec{g})^T \nabla \vec{g} + (\nabla^2 \vec{g}^T) \vec{g}$
Exact Hessian
might be indefinite



Blending Grad. Descent & Newton Method



 $\alpha \rightarrow \infty$: Gauss-Newton Method

 $\alpha \to 0$: Gradient Descent $\Delta \vec{x} = -\alpha \nabla W(\vec{x}) = -\alpha (\nabla \vec{g})^T \vec{g}$

Advanced Topics

- Stochastic Optimization
 - Metropolis Hasting Method
 - Meta-heuristic Optimization (Particle Swarm, Evolutionary Algorithm)
- Gradient Descent
 - Stochastic Gradient Descent
- Newton Method
 - Levenberg–Marquardt method
 - L-BFGS method

End